
Efficient Processing of Deep Neural Networks

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer
Massachusetts Institute of Technology

Reference:
V. Sze, Y.-H.Chen, T.-J. Yang, J. S. Emer, ”Efficient Processing of Deep Neural Networks,”

Synthesis Lectures on Computer Architecture, Morgan & Claypool Publishers, 2020

For book updates, sign up for mailing list at http://mailman.mit.edu/mailman/listinfo/eems-news

June 15, 2020

http://mailman.mit.edu/mailman/listinfo/eems-news

Abstract

This book provides a structured treatment of the key principles and techniques for enabling efficient process-
ing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI)
applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-
art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques
that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency,
throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling
the wide deployment of DNNs in AI systems.

The book includes background on DNN processing; a description and taxonomy of hardware architectural
approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs;
features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency
and throughput; and opportunities for applying new technologies. Readers will find a structured introduction
to the field as well as formalization and organization of key concepts from contemporary work that provide
insights that may spark new ideas.

1

Contents

Preface 9

I Understanding Deep Neural Networks 13

1 Introduction 14

1.1 Background on Deep Neural Networks . 14

1.1.1 Artificial Intelligence and Deep Neural Networks 14

1.1.2 Neural Networks and Deep Neural Networks . 16

1.2 Training versus Inference . 18

1.3 Development History . 21

1.4 Applications of DNNs . 23

1.5 Embedded versus Cloud . 24

2 Overview of Deep Neural Networks 26

2.1 Attributes of Connections Within a Layer . 26

2.2 Attributes of Connections Between Layers . 27

2.3 Popular Types of Layers in DNNs . 28

2.3.1 CONV Layer (Convolutional) . 28

2.3.2 FC Layer (Fully Connected) . 31

2.3.3 Nonlinearity . 32

2

CONTENTS Sze, Chen, Yang, Emer

2.3.4 Pooling and Unpooling . 33

2.3.5 Normalization . 34

2.3.6 Compound Layers . 35

2.4 Convolutional Neural Networks (CNNs) . 35

2.4.1 Popular CNN Models . 36

2.5 Other DNNs . 44

2.6 DNN Development Resources . 45

2.6.1 Frameworks . 45

2.6.2 Models . 46

2.6.3 Popular Datasets for Classification . 46

2.6.4 Datasets for Other Tasks . 48

2.6.5 Summary . 48

II Design of Hardware for Processing DNNs 49

3 Key Metrics and Design Objectives 50

3.1 Accuracy . 50

3.2 Throughput and Latency . 51

3.3 Energy Efficiency and Power Consumption . 57

3.4 Hardware Cost . 60

3.5 Flexibility . 61

3.6 Scalability . 62

3.7 Interplay Between Different Metrics . 63

4 Kernel Computation 64

4.1 Matrix Multiplication with Toeplitz . 65

4.2 Tiling for Optimizing Performance . 66

3

CONTENTS Sze, Chen, Yang, Emer

4.3 Computation Transform Optimizations . 71

4.3.1 Gauss’ Complex Multiplication Transform . 71

4.3.2 Strassen’s Matrix Multiplication Transform . 72

4.3.3 Winograd Transform . 73

4.3.4 Fast Fourier Transform . 74

4.3.5 Selecting a Transform . 75

4.4 Summary . 75

5 Designing DNN Accelerators 77

5.1 Evaluation Metrics and Design Objectives . 78

5.2 Key Properties of DNN to Leverage . 79

5.3 DNN Hardware Design Considerations . 81

5.4 Architectural Techniques for Exploiting Data Reuse . 82

5.4.1 Temporal Reuse . 82

5.4.2 Spatial Reuse . 83

5.5 Techniques to Reduce Reuse Distance . 85

5.6 Dataflows and Loop Nests . 89

5.7 Dataflow Taxonomy . 95

5.7.1 Weight Stationary (WS) . 97

5.7.2 Output Stationary (OS) . 99

5.7.3 Input Stationary (IS) . 101

5.7.4 Row Stationary (RS) . 101

5.7.5 Other Dataflows . 107

5.7.6 Dataflows for Cross-Layer Processing . 108

5.8 DNN Accelerator Buffer Management Strategies . 109

5.8.1 Implicit versus Explicit Orchestration . 109

4

CONTENTS Sze, Chen, Yang, Emer

5.8.2 Coupled versus Decoupled Orchestration . 110

5.8.3 Explicit Decoupled Data Orchestration (EDDO) 111

5.9 Flexible NoC Design for DNN Accelerators . 113

5.9.1 Flexible Hierarchical Mesh Network . 115

5.10 Summary . 119

6 Operation Mapping on Specialized Hardware 120

6.1 Mapping and Loop Nests . 121

6.2 Mappers and Compilers . 124

6.3 Mapper Organization . 126

6.3.1 Map Spaces and Iteration Spaces . 126

6.3.2 Mapper Search . 131

6.3.3 Mapper Models and Configuration Generation . 132

6.4 Analysis Framework for Energy Efficiency . 132

6.4.1 Input Data Access Energy Cost . 133

6.4.2 Partial Sum Accumulation Energy Cost . 134

6.4.3 Obtaining the Reuse Parameters . 135

6.5 Eyexam: Framework for Evaluating Performance . 137

6.5.1 Simple 1-D Convolution Example . 137

6.5.2 Apply Performance Analysis Framework to 1-D Example 138

6.6 Tools for Map Space Exploration . 142

III Co-Design of DNN Hardware and Algorithms 145

7 Reducing Precision 146

7.1 Benefits of Reduce Precision . 146

7.2 Determining the Bit Width . 148

5

CONTENTS Sze, Chen, Yang, Emer

7.2.1 Quantization . 148

7.2.2 Standard Components of the Bit Width . 154

7.3 Mixed Precision: Different Precision for Different Data Types 157

7.4 Varying Precision: Change Precision for Different Parts of the DNN 158

7.5 Binary Nets . 161

7.6 Interplay Between Precision and Other Design Choices . 162

7.7 Summary of Design Considerations for Reducing Precision 163

8 Exploiting Sparsity 164

8.1 Sources of Sparsity . 164

8.1.1 Activation Sparsity . 165

8.1.2 Weight Sparsity . 173

8.2 Compression . 182

8.2.1 Tensor Terminology . 182

8.2.2 Classification of Tensor Representations . 187

8.2.3 Representation of Payloads . 190

8.2.4 Representation Optimizations . 190

8.2.5 Tensor Representation Notation . 192

8.3 Sparse Dataflow . 194

8.3.1 Exploiting Sparse Weights . 199

8.3.2 Exploiting Sparse Activations . 205

8.3.3 Exploiting Sparse Weights and Activations . 208

8.3.4 Exploiting Sparsity in FC Layers . 215

8.3.5 Summary of Sparse Dataflows . 218

8.4 Summary . 218

9 Designing Efficient DNN Models 220

6

CONTENTS Sze, Chen, Yang, Emer

9.1 Manual Network Design . 221

9.1.1 Improving Efficiency of CONV Layers . 221

9.1.2 Improving Efficiency of FC Layers . 229

9.1.3 Improving Efficiency of Network Architecture After Training 229

9.2 Neural Architecture Search . 230

9.2.1 Shrinking the Search Space . 232

9.2.2 Improving the Optimization Algorithm . 234

9.2.3 Accelerating the Performance Evaluation . 236

9.2.4 Example of Neural Architecture Search . 237

9.3 Knowledge Distillation . 239

9.4 Design Considerations for Efficient DNN Models . 240

10 Advanced Technologies 242

10.1 Processing Near Memory . 243

10.1.1 Embedded High-Density Memories . 244

10.1.2 Stacked Memory (3-D Memory) . 244

10.2 Processing in Memory . 245

10.2.1 Non-Volatile Memories (NVM) . 249

10.2.2 Static Random Access Memories (SRAM) . 251

10.2.3 Dynamic Random Access Memories (DRAM) . 253

10.2.4 Design Challenges . 255

10.3 Processing in Sensor . 264

10.4 Processing in the Optical Domain . 265

11 Conclusion 268

Bibliography 270

7

CONTENTS Sze, Chen, Yang, Emer

Author Biographies 293

8

Preface

Deep neural networks (DNNs) have become extraordinarily popular; however, they come at the cost of high
computational complexity. As a result, there has been tremendous interest in enabling efficient processing
of DNNs. The challenge of DNN acceleration is threefold:

• to achieve high performance and efficiency,

• to provide sufficient flexibility to cater to a wide and rapidly changing range of workloads, and

• to integrate well into existing software frameworks.

In order to understand the current state of art in addressing this challenge, this book aims to provide an
overview of DNNs, the various tools for understanding their behavior, and the techniques being explored to
efficiently accelerate their computation. It aims to explain foundational concepts and highlight key design
considerations when building hardware for processing DNNs rather than trying to cover all possible design
configurations, as this is not feasible given the fast pace of the field (see Figure 1). It is targeted at researchers
and practitioners who are familiar with computer architecture who are interested in how to efficiently process
DNNs or how to design DNN models that can be efficiently processed. We hope that this book will provide
a structured introduction to readers who are new to the field, while also formalizing and organizing key
concepts to provide insights that may spark new ideas for those who are already in the field.

Organization

This book is organized into three modules that each consist of several chapters. The first module aims to
provide an overall background to the field of DNN and insight on characteristics of the DNN workload.

• Chapter 1 provides background on the context of why DNNs are important, their history, and their
applications.

• Chapter 2 gives an overview of the basic components of DNNs and popular DNN models currently in
use. It also describes the various resources used for DNN research and development. This includes
discussion of the various software frameworks, and the public datasets that are used for training and
evaluation.

9

PREFACE Sze, Chen, Yang, Emer

Moore’s Law

Figure 1: It’s been observed that the number of ML publications are growing exponentially at a faster rate
than Moore’s law! (Figure from [1].)

The second module focuses on the design of hardware for processing DNNs. It discusses various architecture
design decisions depending on the degree of customization (from general purpose platforms to full custom
hardware) and design considerations when mapping the DNN workloads onto these architectures. Both
temporal and spatial architectures are considered.

• Chapter 3 describes the key metrics that should be considered when designing or comparing various
DNN accelerators.

• Chapter 4 describes how DNN kernels can be processed, with a focus on temporal architectures such
as CPUs and GPUs. To achieve greater efficiency, such architectures generally have a cache hierarchy
and coarser-grained computational capabilities, e.g., vector instructions, making the resulting compu-
tation more efficient. Frequently for such architectures, DNN processing can be transformed into a
matrix multiplication, which has many optimization opportunities. This chapter also discusses var-
ious software and hardware optimizations used to accelerate DNN computations on these platforms
without impacting application accuracy.

• Chapter 5 describes the design of specialized hardware for DNN processing, with a focus on spatial
architectures. It highlights the processing order and resulting data movement in the hardware used to
process a DNN, and the relationship to a loop nest representation of a DNN. The order of the loops in
the loop nest is referred to as the dataflow, and it determines how often each piece of data needs to be
moved. The limits of the loops in the loop nest describe how to break the DNN workload into smaller
pieces, referred to as tiling/blocking to account for the limited storage capacity at different levels of
the memory hierarchy.

• Chapter 6 presents the process of mapping a DNN workload on to a DNN accelerator. It describes the
steps required to find an optimized mapping including enumerating all legal mappings, and searching
those mappings by employing models that project throughput and energy efficiency.

10

PREFACE Sze, Chen, Yang, Emer

The third module discusses how additional improvements in efficiency can be achieved either by moving up
the stack through the co-design of the algorithms and hardware, or down the stack by using mixed signal
circuits, and new memory or device technology. In the cases where the algorithm is modified, the impact on
accuracy must be carefully evaluated.

• Chapter 7 describes how reducing the precision of data and computation can result in increased
throughput and energy efficiency. It discusses how to reduce precision using quantization and the
associated design considerations, including hardware cost and impact on accuracy.

• Chapter 8 describes how exploiting sparsity in DNNs can be used to reduce the footprint of the data,
which provides an opportunity to reduce storage requirements, data movement, and arithmetic opera-
tions. It describes various sources of sparsity and techniques to increase sparsity. It then discusses how
sparse DNN accelerators can translate sparsity into improvements in energy-efficiency and through-
put. It also presents a new abstract data representation that can be used to express and obtain insight
about the dataflows for a variety of sparse DNN accelerators.

• Chapter 9 describes how to optimize the structure of the DNN models (i.e., the ‘network architecture’
of the DNN) to improve both throughput and energy efficiency while trying to minimize impact on
accuracy. It discusses both manual design approaches as well as automatic design approaches (i.e.,
neural architecture search).

• Chapter 10, on advanced technologies, discusses how mixed-signal circuits and new memory tech-
nologies can be used to bring the compute closer to the data (e.g., processing in memory) to address
the expensive data movement that dominates throughput and energy consumption of DNNs. It also
briefly discusses the promise of reducing energy consumption and increasing throughput by perform-
ing the computation and communication in the optical domain.

What’s New?

This book is an extension of a tutorial paper written by the same authors entitled “Efficient Processing
of Deep Neural Networks: A Tutorial and Survey” that appeared in the Proceedings of the IEEE in 2017
and slides from short courses given at ISCA and MICRO in 2016, 2017, and 2019 (slides available at
http://eyeriss.mit.edu/tutorial.html). This book includes recent works since the publication of the tutorial
paper along with a more in-depth treatment of topics such as dataflow, mapping, and processing in memory.
We also provide updates on the fast-moving field of co-design of DNN models and hardware in the areas of
reduced precision, sparsity, and efficient DNN model design. As part of this effort, we present a new way
of thinking about sparse representations and give a detailed treatment of how to handle and exploit sparsity.
Finally, we touch upon recurrent neural networks, auto encoders, and transformers, which we did not discuss
in the tutorial paper.

Scope of book

The main goal of this book is to teach the reader how to tackle the computational challenge of efficiently
processing DNNs rather than how to design DNNs for increased accuracy. As a result, this book does not
cover training (only touching on it lightly), nor does it cover the theory of deep learning or how to design

11

http://eyeriss.mit.edu/tutorial.html

PREFACE Sze, Chen, Yang, Emer

DNN models (though it discusses how to make them efficient) or use them for different applications. For
these aspects, please refer to other references such as Goodfellow’s book [2] and Stanford cs231n course
notes [3].

Acknowledgements

The authors would like to thank Margaret Martonosi for her persistent encouragement to write this book.
We would also like to thank Liane Bernstein, Davis Blalock, Natalie Enright Jerger, Jose Javier Gonza-
lez Ortiz, Fred Kjolstad, Yi-Lun Liao, Andreas Moshovos, Boris Murmann, James Noraky, Angshuman
Parashar, Michael Pellauer, Clément Pit-Claudel, Sophia Shao, Mahmhut Ersin Sinangil, Po-An Tsai, Mar-
ian Verhelst, Tom Wenisch, Diana Wofk, Nellie Wu, and students in our ”Hardware Architectures for Deep
Learning” class at MIT, who have provided invaluable feedback and discussions on the topics described
in this book. We would also like to express our deepest appreciation to Robin Emer for her suggestions,
support, and tremendous patience during the writing of this book.

As mentioned earlier in the Preface, this book is an extension of an earlier tutorial paper, which was based
on tutorials we gave at ISCA and MICRO. We would like to thank David Brooks for encouraging us to do
the first tutorial at MICRO in 2016, which sparked the effort that led to this book.

This work was funded in part by DARPA YFA, the DARPA contract HR0011-18-3-0007, the MIT Center
for Integrated Circuits and Systems (CICS), the MIT-IBM Watson AI Lab, the MIT Quest for Intelligence,
the NSF E2CDA 1639921, and gifts/faculty awards from Nvidia, Facebook, Google, Intel, and Qualcomm.

12

Part II

Design of Hardware for Processing DNNs

49

Chapter 3

Key Metrics and Design Objectives

Over the past few years, there has been a significant amount of research on efficient processing of DNNs. Ac-
cordingly, it is important to discuss the key metrics that one should consider when comparing and evaluating
the strengths and weaknesses of different designs and proposed techniques and that should be incorporated
into design considerations. While efficiency is often only associated with the number of operations per sec-
ond per Watt (e.g., floating-point operations per second per Watt as FLOPS/W or tera-operations per second
per Watt as TOPS/W), it is actually composed of many more metrics including accuracy, throughput, latency,
energy consumption, power consumption, cost, flexibility, and scalability. Reporting a comprehensive set
of these metrics is important in order to provide a complete picture of the trade-offs made by a proposed
design or technique.

In this chapter, we will

• discuss the importance of each of these metrics;

• breakdown the factors that affect each metric. When feasible, present equations that describe the
relationship between the factors and the metrics;

• describe how these metrics can be incorporated into design considerations for both the DNN hardware
and the DNN model (i.e., workload); and

• specify what should be reported for a given metric to enable proper evaluation.

Finally, we will provide a case study on how one might bring all these metrics together for a holistic evalu-
ation of a given approach. But first, we will discuss each of the metrics.

3.1 Accuracy

Accuracy is used to indicate the quality of the result for a given task. The fact that DNNs can achieve state-
of-the-art accuracy on a wide range of tasks is one of the key reasons driving the popularity and wide use of
DNNs today. The units used to measure accuracy depend on the task. For instance, for image classification,

50

3.2. THROUGHPUT AND LATENCY Sze, Chen, Yang, Emer

accuracy is reported as the percentage of correctly classified images, while for object detection, accuracy is
reported as the mean average precision (mAP), which is related to the trade off between the true positive
rate and false positive rate.

Factors that affect accuracy include the difficulty of the task and dataset.1 For instance, classification on
ImageNet is much more difficult than on MNIST, and object detection or semantic segmentation is more
difficult than classification. As a result, a DNN model that performs well on MNIST may not necessarily
perform well on ImageNet.

Achieving high accuracy on difficult tasks or datasets typically requires more complex DNN models (e.g.,
a larger number of MAC operations and more distinct weights, increased diversity in layer shapes, etc.),
which can impact how efficiently the hardware can process the DNN model.

Accuracy should therefore be interpreted in the context of the difficulty of the task and dataset.2 Evaluating
hardware using well-studied, widely used DNN models, tasks, and datasets can allow one to better interpret
the significance of the accuracy metric. Recently, motivated by the impact of the SPEC benchmarks for
general purpose computing [113], several industry and academic organizations have put together a broad
suite of DNN models, called MLPerf, to serve as a common set of well-studied DNN models to evaluate
the performance and enable fair comparison of various software frameworks, hardware accelerators, and
cloud platforms for both training and inference of DNNs [114].3 The suite includes various types of DNNs
(e.g., CNN, RNN, etc.) for a variety of tasks including image classification, object identification, translation,
speech-to-text, recommendation, sentiment analysis, and reinforcement learning.

3.2 Throughput and Latency

Throughput is used to indicate the amount of data that can be processed or the number of executions of a
task that can be completed in a given time period. High throughput is often critical to an application. For
instance, processing video at 30 frames per second is necessary for delivering real-time performance. For
data analytics, high throughput means that more data can be analyzed in a given amount of time. As the
amount of visual data is growing exponentially, high-throughput big data analytics becomes increasingly
important, particularly if an action needs to be taken based on the analysis (e.g., security or terrorist pre-
vention; medical diagnosis or drug discovery). Throughput is often generically reported as the number of
operations per second. In the case of inference, throughput is reported as inferences per second or in the
form of runtime in terms of seconds per inference.

Latency measures the time between when the input data arrives to a system and when the result is gener-
ated. Low latency is necessary for real-time interactive applications, such as augmented reality, autonomous
navigation, and robotics. Latency is typically reported in seconds.

Throughput and latency are often assumed to be directly derivable from one another. However, they are actu-
ally quite distinct. A prime example of this is the well-known approach of batching input data (e.g., batching

1Ideally, robustness and fairness should be considered in conjunction with accuracy, as there is also an interplay between these
factors; however, these are areas of on-going research and beyond the scope of this book.

2As an analogy, getting 9 out of 10 answers correct on a high school exam is different than 9 out of 10 answers correct on a
college-level exam. One must look beyond the score and consider the difficulty of the exam.

3Earlier DNN benchmarking efforts including DeepBench [115] and Fathom [116] have now been subsumed by MLPerf.

51

3.2. THROUGHPUT AND LATENCY Sze, Chen, Yang, Emer

multiple images or frames together for processing) to increase throughput since it amortizes overhead, such
as loading the weights; however, batching also increases latency (e.g., at 30 frames per second and a batch
of 100 frames, some frames will experience at least 3.3 second delay), which is not acceptable for real-time
applications, such as high-speed navigation where it would reduce the time available for course correction.
Thus, achieving low latency and high throughput simultaneously can sometimes be at odds depending on
the approach and both should be reported.4

There are several factors that affect throughput and latency. In terms of throughput, the number of inferences
per second is affected by

inferences
second

=
operations

second
× 1

operations
inference

, (3.1)

where the number of operations per second is dictated by both the DNN hardware and DNN model, while
the number of operations per inference is dictated by the DNN model.

When considering a system comprised of multiple processing elements (PEs), where a PE corresponds to a
simple or primitive core that performs a single MAC operation, the number of operations per second can be
further decomposed as follows:

operations
second

=

(
1

cycles
operation

× cycles
second

)
︸ ︷︷ ︸

for a single PE

×number of PEs× utilization of PEs. (3.2)

The first term reflects the peak throughput of a single PE, the second term reflects the amount of parallelism,
while the last term reflects degradation due to the inability of the architecture to effectively utilize the PEs.

Since the main operation for processing DNNs is a MAC, we will use number of operations and number of
MAC operations interchangeably.

One can increase the peak throughput of a single PE by increasing the number of cycles per second, which
corresponds to a higher clock frequency, by reducing the critical path at the circuit or micro-architectural
level, or the number of cycles per operations, which can be affected by the design of the MAC (e.g., a
non-pipelined multi-cycle MAC would have more cycles per operation).

While the above approaches increase the throughput of a single PE, the overall throughput can be increased
by increasing the number of PEs, and thus the maximum number of MAC operations that can be performed
in parallel. The number of PEs is dictated by the area density of the PE and the area cost of the system. If
the area cost of the system is fixed, then increasing the number of PEs requires either increasing the area

4The phenomenon described here can also be understood using Little’s Law [117] from queuing theory, where the relationship
between average throughput and average latency are related by the average number of tasks in flight, as defined by

throughput =
tasks-in-flight

latency
.

A DNN-centric version of Little’s Law would have throughput measured in inferences per second, latency measured in seconds,
and inferences-in-flight, as the tasks-in-flight equivalent, measured in the number of images in a batch being processed simultane-
ously. This helps to explain why increasing the number of inferences in flight to increase throughput may be counterproductive
because some techniques that increase the number of inferences in flight (e.g., batching) also increase latency.

52

3.2. THROUGHPUT AND LATENCY Sze, Chen, Yang, Emer

density of the PE (i.e., reduce the area per PE) or trading off on-chip storage area for more PEs. Reducing
on-chip storage, however, can affect the utilization of the PEs, which we will discuss next.

Increasing the density of PEs can also be achieved by reducing the logic associated with delivering operands
to a MAC. This can be achieved by controlling multiple MACs with a single piece of logic. This is analogous
to the situation in instruction-based systems such as CPUs and GPUs that reduce instruction bookkeeping
overhead by using large aggregate instructions (e.g., single-instruction, multiple-data (SIMD) / Vector In-
structions; single-instruction, multiple-threads (SIMT) / Tensor Instructions), where a single instruction can
be used to initiate multiple operations.

The number of PEs and the peak throughput of a single PE only indicate the theoretical maximum through-
put (i.e., peak performance) when all PEs are performing computation (100% utilization). In reality, the
achievable throughput depends on the actual utilization of those PEs, which is affected by several factors as
follows:

utilization of PEs =
number of active PEs

number of PEs
× utilization of active PEs. (3.3)

The first term reflects the ability to distribute the workload to PEs, while the second term reflects how
efficiently those active PEs are processing the workload.

The number of active PEs is the number of PEs that receive work; therefore, it is desirable to distribute the
workload to as many PEs as possible. The ability to distribute the workload is determined by the flexibility
of the architecture, for instance the on-chip network, to support the layer shapes in the DNN model.

Within the constraints of the on-chip network, the number of active PEs is also determined by the spe-
cific allocation of work to PEs by the mapping process. The mapping process involves the placement and
scheduling in space and time of every MAC operation (including the delivery of the appropriate operands)
onto the PEs. Mapping can be thought of as a compiler for the DNN hardware. The design of on-chip
networks and mappings are discussed in Chapters 5 and 6.

The utilization of the active PEs is largely dictated by the timely delivery of work to the PEs such that the
active PEs do not become idle while waiting for the data to arrive. This can be affected by the bandwidth
and latency of the (on-chip and off-chip) memory and network. The bandwidth requirements can be affected
by the amount of data reuse available in the DNN model and the amount of data reuse that can be exploited
by the memory hierarchy and dataflow. The dataflow determines the order of operations and where data
is stored and reused. The amount of data reuse can also be increased using a larger batch size, which is
one of the reasons why increasing batch size can increase throughput. The challenge of data delivery and
memory bandwidth are discussed in Chapters 5 and 6. The utilization of the active PEs can also be affected
by the imbalance of work allocated across PEs, which can occur when exploiting sparsity (i.e., avoiding
unnecessary work associated with multiplications by zero); PEs with less work become idle and thus have
lower utilization.

There is also an interplay between the number of PEs and the utilization of PEs. For instance, one way
to reduce the likelihood that a PE needs to wait for data is to store some data locally near or within the
PE. However, this requires increasing the chip area allocated to on-chip storage, which, given a fixed chip
area, would reduce the number of PEs. Therefore, a key design consideration is how much area to allocate
to compute (which increases the number of PEs) versus on-chip storage (which increases the utilization of

53

3.2. THROUGHPUT AND LATENCY Sze, Chen, Yang, Emer

Performance
(ops/sec)

Operational Intensity
(ops/byte)

Inflection point
slope = BW

peak
perf.

BW-
Limited

Computation-
Limited

optimal
op. int.

Figure 3.1: The roofline model. The peak operations per second is indicated by the bold line; when the
operation intensity, which dictates by amount of compute per byte of data, is low, the operations per second
is limited by the data delivery. The design goal is to operate as close as possible to the peak operations per
second for the operation intensity of a given workload.

PEs).

The impact of these factors can be captured using Eyexam, which is a systematic way of understanding
the performance limits for DNN processors as a function of specific characteristics of the DNN model
and accelerator design. Eyexam includes and extends the well-known roofline model [118]. The roofline
model, as illustrated in Figure 3.1, relates average bandwidth demand and peak computational ability to
performance. Eyexam is described in Chapter 6.

While the number of operations per inference in Equation (3.1) depends on the DNN model, the operations
per second depends on both the DNN model and the hardware. For example, designing DNN models
with efficient layer shapes (also referred to efficient network architectures), as described in Chapter 9, can
reduce the number of MAC operations in the DNN model and consequently the number of operations per
inference. However, such DNN models can result in a wide range of layer shapes, some of which may have
poor utilization of PEs and therefore reduce the overall operations per second, as shown in Equation (3.2).

A deeper consideration of the operations per second, is that all operations are not created equal and therefore
cycles per operation may not be a constant. For example, if we consider the fact that anything multiplied
by zero is zero, some MAC operations are ineffectual (i.e., they do not change the accumulated value). The
number of ineffectual operations is a function of both the DNN model and the input data. These ineffectual
MAC operations can require fewer cycles or no cycles at all. Conversely, we only need to process effectual
(or non-zero) MAC operations, where both inputs are non-zero; this is referred to as exploiting sparsity,
which is discussed in Chapter 8.

Processing only effectual MAC operations can increase the (total) operations per second by increasing
the (total) operations per cycle.5 Ideally, the hardware would skip all ineffectual operations; however, in
practice, designing hardware to skip all ineffectual operations can be challenging and result in increased

5By total operations we mean both effectual and ineffectual operations.

54

3.2. THROUGHPUT AND LATENCY Sze, Chen, Yang, Emer

hardware complexity and overhead, as discussed in Chapter 8. For instance, it might be easier to design
hardware that only recognizes zeros in one of the operands (e.g., weights) rather than both. Therefore, the
ineffectual operations can be further divided into those that are exploited by the hardware (i.e., skipped) and
those that are unexploited by the hardware (i.e., not skipped). The number of operations actually performed
by the hardware is therefore effectual operations plus unexploited ineffectual operations.

Equation (3.4) shows how operations per cycle can be decomposed into

1. the number of effectual operations plus unexploited ineffectual operations per cycle, which remains
somewhat constant for a given hardware accelerator design;

2. the ratio of effectual operations over effectual operations plus unexploited ineffectual operations,
which refers to the ability of the hardware to exploit ineffectual operations (ideally unexploited inef-
fectual operations should be zero, and this ratio should be one); and

3. the number of effectual operations out of (total) operations, which is related to the amount of sparsity
and depends on the DNN model.

As the amount of sparsity increases (i.e., the number of effectual operations out of (total) operations de-
creases), the operations per cycle increases, which subsequently increases operations per second, as shown
in Equation (3.2):

operations
cycle

=
effectual operations + unexploited ineffectual operations

cycle

× effectual operations
effectual operations + unexploited ineffectual operations

× 1
effectual operations

operations

.
(3.4)

However, exploiting sparsity requires additional hardware to identify when inputs are zero to avoid perform-
ing unnecessary MAC operations. The additional hardware can increase the critical path, which decreases
cycles per second, and also reduce area density of the PE, which reduces the number of PEs for a given
area. Both of these factors can reduce the operations per second, as shown in Equation (3.2). Therefore, the
complexity of the additional hardware can result in a trade off between reducing the number of unexploited
ineffectual operations and increasing critical path or reducing the number of PEs.

Finally, designing hardware and DNN models that support reduced precision (i.e., fewer bits per operand
and per operations), which is discussed in Chapter 7, can also increase the number of operations per second.
Fewer bits per operand means that the memory bandwidth required to support a given operation is reduced,
which can increase the utilization of PEs since they are less likely to be starved for data. In addition, the area
of each PE can be reduced, which can increase the number of PEs for a given area. Both of these factors
can increase the operations per second, as shown in Equation (3.2). Note, however, that if multiple levels of
precision need to be supported, additional hardware is required, which can, once again, increase the critical
path and also reduce area density of the PE, both of which can reduce the operations per second, as shown
in Equation (3.2).

In this section, we discussed multiple factors that affect the number of inferences per second. Table 3.1
classifies whether the factors are dictated by the hardware, by the DNN model or both.

55

3.2. THROUGHPUT AND LATENCY Sze, Chen, Yang, Emer

Table 3.1: Classification of factors that affect inferences per second.

Factor Hardware DNN Model Input Data

operations per inference X

operations per cycle X

cycles per second X

number of PEs X

number of active PEs X X

utilization of active PEs X X

effectual operations out of (total) operations X X

effectual operations plus unexploited ineffectual operations per cycle X

Figure 3.2: The number of MAC operations in various DNN models versus latency measured on Pixel
phone. Clearly, the number of MAC operations is not a good predictor of latency. (Figure from [119].)

In summary, the number of MAC operations in the DNN model alone is not sufficient for evaluating the
throughput and latency. While the DNN model can affect the number of MAC operations per inference
based on the network architecture (i.e., layer shapes) and the sparsity of the weights and activations, the
overall impact that the DNN model has on throughput and latency depends on the ability of the hardware
to add support to recognize these approaches without significantly reducing utilization of PEs, number of
PEs, or cycles per second. This is why the number of MAC operations is not necessarily a good proxy for
throughput and latency (e.g., Figure 3.2), and it is often more effective to design efficient DNN models with
hardware in the loop. Techniques for designing DNN models with hardware in the loop are discussed in
Chapter 9.

Similarly, the number of PEs in the hardware and their peak throughput are not sufficient for evaluating the
throughput and latency. It is critical to report actual runtime of the DNN models on hardware to account for
other effects such as utilization of PEs, as highlighted in Equation (3.2). Ideally, this evaluation should be
performed on clearly specified DNN models, for instance those that are part of the MLPerf benchmarking
suite. In addition, batch size should be reported in conjunction with the throughput in order to evaluate
latency.

56

3.3. ENERGY EFFICIENCY AND POWER CONSUMPTION Sze, Chen, Yang, Emer

3.3 Energy Efficiency and Power Consumption

Energy efficiency is used to indicate the amount of data that can be processed or the number of executions of
a task that can be completed for a given unit of energy. High energy efficiency is important when processing
DNNs at the edge in embedded devices with limited battery capacity (e.g., smartphones, smart sensors,
robots, and wearables). Edge processing may be preferred over the cloud for certain applications due to
latency, privacy, or communication bandwidth limitations. Energy efficiency is often generically reported as
the number of operations per joule. In the case of inference, energy efficiency is reported as inferences per
joule or the inverse as energy consumption in terms of joules per inference.

Power consumption is used to indicate the amount of energy consumed per unit time. Increased power
consumption results in increased heat dissipation; accordingly, the maximum power consumption is dictated
by a design criterion typically called the thermal design power (TDP), which is the power that the cooling
system is designed to dissipate. Power consumption is important when processing DNNs in the cloud as
data centers have stringent power ceilings due to cooling costs; similarly, handheld and wearable devices
also have tight power constraints since the user is often quite sensitive to heat and the form factor of the
device limits the cooling mechanisms (e.g., no fans). Power consumption is typically reported in watts or
joules per second.

Power consumption in conjunction with energy efficiency limits the throughput as follows:

inferences
second

≤ Max
(

joules
second

)
× inferences

joule
. (3.5)

Therefore, if we can improve energy efficiency by increasing the number of inferences per joule, we can
increase the number of inferences per second and thus throughput of the system.

There are several factors that affect the energy efficiency. The number of inferences per joule can be decom-
posed into

inferences
joule

=
operations

joule
× 1

operations
inference

, (3.6)

where the number of operations per joule is dictated by both the hardware and DNN model, while the
number of operations per inference is dictated by the DNN model.

There are various design considerations for the hardware that will affect the energy per operation (i.e., joules
per operation). The energy per operation can be broken down into the energy required to move the input and
output data, and the energy required to perform the MAC computation

Energytotal = Energydata + EnergyMAC . (3.7)

For each component the joules per operation6 is computed as
6Here, an operation can be a MAC operation or a data movement.

57

3.3. ENERGY EFFICIENCY AND POWER CONSUMPTION Sze, Chen, Yang, Emer

Operation: Energy
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]

Figure 3.3: The energy consumption for various arithmetic operations and memory accesses in a 45 nm
process. The relative energy cost (computed relative to the 8b add) is shown on a log scale. The energy con-
sumption of data movement (red) is significantly higher than arithmetic operations (blue). (Figure adapted
from [120].)

joules
operation

= α× C × VDD
2, (3.8)

where C is the total switching capacitance, VDD is the supply voltage, and α is the switching activity, which
indicates how often the capacitance is charged.

The energy consumption is dominated by the data movement as the capacitance of data movement tends to
be much higher that the capacitance for arithmetic operations such as a MAC (Figure 3.3). Furthermore, the
switching capacitance increases the further the data needs to travel to reach the PE, which consists of the
distance to get out of the memory where the data is stored and the distance to cross the network between the
memory and the PE. Accordingly, larger memories and longer interconnects (e.g., off-chip) tend to consume
more energy than smaller and closer memories due to the capacitance of the long wires employed. In order
to reduce the energy consumption of data movement, we can exploit data reuse where the data is moved
once from distant large memory (e.g., off-chip DRAM) and reused for multiple operations from a local
smaller memory (e.g., on-chip buffer or scratchpad within the PE). Optimizing data movement is a major
consideration in the design of DNN accelerators; the design of the dataflow, which defines the processing
order, to increase data reuse within the memory hierarchy is discussed in Chapter 5. In addition, advanced
device and memory technologies can be used to reduce the switching capacitance between compute and
memory, as described in Chapter 10.

This raises the issue of the appropriate scope over which energy efficiency and power consumption should be
reported. Including the entire system (out to the fans and power supplies) is beyond the scope of this book.
Conversely, ignoring off-chip memory accesses, which can vary greatly between chip designs, can easily
result in a misleading perception of the efficiency of the system. Therefore, it is critical to not only report the

58

3.3. ENERGY EFFICIENCY AND POWER CONSUMPTION Sze, Chen, Yang, Emer

energy efficiency and power consumption of the chip, but also the energy efficiency and power consumption
of the off-chip memory (e.g., DRAM) or the amount of off-chip accesses (e.g., DRAM accesses) if no
specific memory technology is specified; for the latter, it can be reported in terms of the total amount of data
that is read and written off-chip per inference.

Reducing the joules per MAC operation itself can be achieved by reducing the switching activity and/or
capacitance at a circuit level or micro-architecture level. This can also be achieved by reducing precision
(e.g., reducing the bit width of the MAC operation), as shown in Figure 3.3 and discussed in Chapter 7. Note
that the impact of reducing precision on accuracy must also be considered.

For instruction-based systems such as CPUs and GPUs, this can also be achieved by reducing instruction
bookkeeping overhead. For example, using large aggregate instructions (e.g., single-instruction, multiple-
data (SIMD) / Vector Instructions; single-instruction, multiple-threads (SIMT) / Tensor Instructions), a sin-
gle instruction can be used to initiate multiple operations.

Similar to the throughput metric discussed in Section 3.2, the number of operations per inference depends
on the DNN model, however the operations per joules may be a function of the ability of the hardware to
exploit sparsity to avoid performing ineffectual MAC operations. Equation (3.9) shows how operations per
joule can be decomposed into:

1. the number of effectual operations plus unexploited ineffectual operations per joule, which remains
somewhat constant for a given hardware architecture design;

2. the ratio of effectual operations over effectual operations plus unexploited ineffectual operations,
which refers to the ability of the hardware to exploit ineffectual operations (ideally unexploited inef-
fectual operations should be zero, and this ratio should be one); and

3. the number of effectual operations out of (total) operations, which is related to the amount of sparsity
and depends on the DNN model.

operations
joule

=
effectual operations + unexploited ineffectual operations

joule

× effectual operations
effectual operations + unexploited ineffectual operations

× 1
effectual operations

operations

.

(3.9)

For hardware that can exploit sparsity, increasing the amount of sparsity (i.e., decreasing the number of
effectual operations out of (total) operations) can increase the number of operations per joule, which sub-
sequently increases inferences per joule, as shown in Equation (3.6). While exploiting sparsity has the
potential of increasing the number of (total) operations per joule, the additional hardware will decrease the
effectual operations plus unexploited ineffectual operations per joule. In order to achieve a net benefit, the
decrease in effectual operations plus unexploited ineffectual operations per joule must be more than offset
by the decrease of effectual operations out of (total) operations.

59

3.4. HARDWARE COST Sze, Chen, Yang, Emer

In summary, we want to emphasize that the number of MAC operations and weights in the DNN model
are not sufficient for evaluating energy efficiency. From an energy perspective, all MAC operations or
weights are not created equal. This is because the number of MAC operations and weights do not reflect
where the data is accessed and how much the data is reused, both of which have a significant impact on the
operations per joule. Therefore, the number of MAC operations and weights is not necessarily a good proxy
for energy consumption and it is often more effective to design efficient DNN models with hardware in the
loop. Techniques for designing DNN models with hardware in the loop are discussed in Chapter 9.

In order to evaluate the energy efficiency and power consumption of the entire system, it is critical to not
only report the energy efficiency and power consumption of the chip, but also the energy efficiency and
power consumption of the off-chip memory (e.g., DRAM) or the amount of off-chip accesses (e.g., DRAM
accesses) if no specific memory technology is specified; for the latter, it can be reported in terms of the total
amount of data that is read and written off-chip per inference. As with throughput and latency, the evaluation
should be performed on clearly specified, ideally widely used, DNN models.

3.4 Hardware Cost

In order to evaluate the desirability of a given architecture or technique, it is also important to consider the
hardware cost of the design. Hardware cost is used to indicate the monetary cost to build a system.7 This is
important from both an industry and a research perspective to dictate whether a system is financially viable.
From an industry perspective, the cost constraints are related to volume and market; for instance, embedded
processors have a much more stringent cost limitations than processors in the cloud.

One of the key factors that affect cost is the chip area (e.g., square millimeters, mm2) in conjunction with
the process technology (e.g., 45 nm CMOS), which constrains the amount of on-chip storage and amount of
compute (e.g., the number of PEs for custom DNN accelerators, the number of cores for CPUs and GPUs,
the number of digital signal processing (DSP) engines for FPGAs, etc.). To report information related to
area, without specifying a specific process technology, the amount of on-chip memory (e.g, storage capacity
of the global buffer) and compute (e.g., number of PEs) can be used as a proxy for area.

Another important factor is the amount of off-chip bandwidth, which dictates the cost and complexity of
the packaging and printed circuit board (PCB) design (e.g., High Bandwidth Memory (HBM) [121] to
connect to off-chip DRAM, NVLink to connect to other GPUs, etc.), as well as whether additional chip
area is required for a transceiver to handle signal integrity at high speeds. The off-chip bandwidth, which is
typically reported in gigabits per second (Gbps), sometimes including the number of I/O ports, can be used
as a proxy for packaging and PCB cost.

There is also an interplay between the costs attributable to the chip area and off-chip bandwidth. For in-
stance, increasing on-chip storage, which increases chip area, can reduce off-chip bandwidth. Accordingly,
both metrics should be reported in order to provide perspective on the total cost of the system.

7There is also cost associated with operating a system, such as the electricity bill and the cooling cost, which are primarily
dictated by the energy efficiency and power consumption, respectively. There is also cost associated with designing the system.
The operating cost is covered by the section on energy efficiency and power consumption and we limited our coverage of design
cost to the fact that custom DNN accelerators have a higher design cost than off-the-shelf CPUs and GPUs. We consider anything
beyond this, e.g., the economics of the semiconductor business, including how to price platforms, is outside the scope of this book.

60

3.5. FLEXIBILITY Sze, Chen, Yang, Emer

Of course reducing cost alone is not the only objective. The design objective is invariably to maximize the
throughput or energy efficiency for a given cost, specifically, to maximize inferences per second per cost
(e.g., $) and/or inferences per joule per cost. This is closely related to the previously discussed property of
utilization; to be cost efficient, the design should aim to utilize every PE to increase inferences per second,
since each PE increases the area and thus the cost of the chip; similarly, the design should aim to effectively
utilize all the on-chip storage to reduce off-chip bandwidth, or increase operations per off-chip memory
access as expressed by the roofline model (see Figure 3.1), as each byte of on-chip memory also increases
cost.

3.5 Flexibility

The merit of a DNN accelerator is also a function of its flexibility. Flexibility refers to the range of DNN
models that can be supported on the DNN processor and the ability of the software environment (e.g., the
mapper) to maximally exploit the capabilities of the hardware for any desired DNN model. Given the fast-
moving pace of DNN research and deployment, it is increasingly important that DNN processors support a
wide range of DNN models and tasks.

We can define support in two tiers: the first tier requires that the hardware only needs to be able to function-
ally support different DNN models (i.e., the DNN model can run on the hardware). The second tier requires
that the hardware should also maintain efficiency (i.e., high throughput and energy efficiency) across differ-
ent DNN models.

To maintain efficiency, the hardware should not rely on certain properties of the DNN models to achieve
efficiency, as the properties cannot be guaranteed. For instance, a DNN accelerator that can efficiently
support the case where the entire DNN model (i.e., all the weights) fits on-chip may perform extremely
poorly when the DNN model grows larger, which is likely given that the size of DNN models continue
to increase over time, as discussed in Section 2.4.1; a more flexible processor would be able to efficiently
handle a wide range of DNN models, even those that exceed on-chip memory.

The degree of flexibility provided by a DNN accelerator is a complex trade-off with accelerator cost. Specif-
ically, additional hardware usually needs to be added in order to flexibly support a wider range of workloads
and/or improve their throughput and energy efficiency. We all know that specialization improves efficiency;
thus, the design objective is to reduce the overhead (e.g., area cost and energy consumption) of supporting
flexibility while maintaining efficiency across the wide range of DNN models. Thus, evaluating flexibility
would entail ensuring that the extra hardware is a net benefit across multiple workloads.

Flexibility has become increasingly important when we factor in the many techniques that are being applied
to the DNN models with the promise to make them more efficient, since they increase the diversity of
workloads that need to be supported. These techniques include DNNs with different network architectures
(i.e., different layer shapes, which impacts the amount of required storage and compute and the available
data reuse that can be exploited), as described in Chapter 9, different levels of precision (i.e., different
number of bits for across layers and data types), as described in Chapter 7, and different degrees of sparsity
(i.e., number of zeros in the data), as described in Chapter 8. There are also different types of DNN layers
and computation beyond MAC operations (e.g., activation functions) that need to be supported.

Actually getting a performance or efficiency benefit from these techniques invariably requires additional

61

3.6. SCALABILITY Sze, Chen, Yang, Emer

hardware, because a simpler DNN accelerator design may not benefit from these techniques. Again, it is
important that the overhead of the additional hardware does not exceed the benefits of these techniques. This
encourages a hardware and DNN model co-design approach.

To date, exploiting the flexibility of DNN hardware has relied on mapping processes that act like static per-
layer compilers. As the field moves to DNN models that change dynamically, mapping processes will need
to dynamically adapt at runtime to changes in the DNN model or input data, while still maximally exploiting
the flexibility of the hardware to improve efficiency.

In summary, to assess the flexibility of DNN processors, its efficiency (e.g., inferences per second, inferences
per joule) should be evaluated on a wide range of DNN models. The MLPerf benchmarking workloads are a
good start; however, additional workloads may be needed to represent efficient techniques such as efficient
network architectures, reduced precision and sparsity. The workloads should match the desired application.
Ideally, since there can be many possible combinations, it would also be beneficial to define the range and
limits of DNN models that can be efficiently supported on a given platform (e.g., maximum number of
weights per filter or DNN model, minimum amount of sparsity, required structure of the sparsity, levels of
precision such as 8-bit, 4-bit, 2-bit, or 1-bit, types of layers and activation functions, etc.).

3.6 Scalability

Scalability has become increasingly important due to the wide use cases for DNNs and emerging technolo-
gies used for scaling up not just the size of the chip, but also building systems with multiple chips (often
referred to as chiplets) [122] or even wafer-scale chips [123]. Scalability refers to how well a design can
be scaled up to achieve higher throughput and energy efficiency when increasing the amount of resources
(e.g., the number of PEs and on-chip storage). This evaluation is done under the assumption that the system
does not have to be significantly redesigned (e.g., the design only needs to be replicated) since major design
changes can be expensive in terms of time and cost. Ideally, a scalable design can be used for low-cost
embedded devices and high-performance devices in the cloud simply by scaling up the resources.

Ideally, the throughput would scale linearly and proportionally with the number of PEs. Similarly, the
energy efficiency would also improve with more on-chip storage, however, this would be likely be nonlinear
(e.g., increasing the on-chip storage such that the entire DNN model fits on chip would result in an abrupt
improvement in energy efficiency). In practice, this is often challenging due to factors such as the reduced
utilization of PEs and the increased cost of data movement due to long distance interconnects.

Scalability can be connected with cost efficiency by considering how inferences per second per cost (e.g.,
$) and inferences per joule per cost changes with scale. For instance, if throughput increases linearly with
number of PEs, then the inferences per second per cost would be constant. It is also possible for the
inferences per second per cost to improve super-linearly with increasing number of PEs, due to increased
sharing of data across PEs.

In summary, to understand the scalability of a DNN accelerator design, it is important to report its perfor-
mance and efficiency metrics as the number of PEs and storage capacity increases. This may include how
well the design might handle technologies used for scaling up, such as inter-chip interconnect.

62

3.7. INTERPLAY BETWEEN DIFFERENT METRICS Sze, Chen, Yang, Emer

3.7 Interplay Between Different Metrics

It is important that all metrics are accounted for in order to fairly evaluate all the design trade-offs. For
instance, without the accuracy given for a specific dataset and task, one could run a simple DNN and easily
claim low power, high throughput, and low cost—however, the processor might not be usable for a mean-
ingful task; alternatively, without reporting the off-chip bandwidth, one could build a processor with only
multipliers and easily claim low cost, high throughput, high accuracy, and low chip power—however, when
evaluating system power, the off-chip memory access would be substantial. Finally, the test setup should
also be reported, including whether the results are measured or obtained from simulation8 and how many
images were tested.

In summary, the evaluation process for whether a DNN system is a viable solution for a given application
might go as follows:

1. the accuracy determines if it can perform the given task;

2. the latency and throughput determine if it can run fast enough and in real time;

3. the energy and power consumption will primarily dictate the form factor of the device where the
processing can operate;

4. the cost, which is primarily dictated by the chip area and external memory bandwidth requirements,
determines how much one would pay for this solution;

5. flexibility determines the range of tasks it can support; and

6. the scalability determines whether the same design effort can be amortized for deployment in multiple
domains, (e.g., in the cloud and at the edge), and if the system can efficiently be scaled with DNN
model size.

8If obtained from simulation, it should be clarified whether it is from synthesis or post place-and-route and what library corner
(e.g., process corner, supply voltage, temperature) was used.

63

Chapter 10

Advanced Technologies

As highlighted throughout the previous chapters, data movement dominates energy consumption. The en-
ergy is consumed both in the access to the memory as well as the transfer of the data. The associated physical
factors also limit the bandwidth available to deliver data between memory and compute, and thus limits the
throughput of the overall system. This is commonly referred to by computer architects as the “memory
wall.”1

To address the challenges associated with data movement, there have been various efforts to bring compute
and memory closer together. Chapters 5 and 6 primarily focus on how to design spatial architectures that
distribute the on-chip memory closer to the computation (e.g., scratch pad memory in the PE). This chapter
will describe various other architectures that use advanced memory, process, and fabrication technologies
to bring the compute and memory together.

First, we will describe efforts to bring the off-chip high-density memory (e.g., DRAM) closer to the com-
putation. These approaches are often referred to as processing near memory or near-data processing, and
include memory technologies such as embedded DRAM and 3-D stacked DRAM.

Next, we will describe efforts to integrate the computation into the memory itself. These approaches are
often referred to as processing in memory or in-memory computing, and include memory technologies such
as Static Random Access Memories (SRAM), Dynamic Random Access Memories (DRAM), and emerging
non-volatile memory (NVM). Since these approaches rely on mixed-signal circuit design to enable pro-
cessing in the analog domain, we will also discuss the design challenges related to handling the increased
sensitivity to circuit and device non-idealities (e.g., nonlinearity, process and temperature variations), as
well as the impact on area density, which is critical for memory.

Significant data movement also occurs between the sensor that collects the data and the DNN processor. The
same principles that are used to bring compute near the memory, where the weights are stored, can be used
to bring the compute near the sensor, where the input data is collected. Therefore, we will also discuss how
to integrate some of the compute into the sensor.

Finally, since photons travel much faster than electrons and the cost of moving a photon can be independent
of distance, processing in the optical domain using light may provide significant improvements in energy

1Specifically, the memory wall refers to data moving between the off-chip memory (e.g., DRAM) and the processor.

242

10.1. PROCESSING NEAR MEMORY Sze, Chen, Yang, Emer

Table 10.1: Example of recent works that explore processing near memory. For I/O, TSV refers to through-
silicon vias, while TCI refers to ThruChip Interface which uses inductive coupling. For bandwidth, ch
refers to number of parallel communication channels, which can be the number of tiles (for eDRAM) or
the number of vaults (for stacked memory). The size of stacked DRAM is based on Hybrid Memory Cube
(HMC) Gen2 specifications.

Technology Size I/O Bandwidth Evaluation

DaDianNao [151] eDRAM 32MB on-chip 18 ch×310 GB/s = 5580 GB/s Simulated

Neurocube [315] Stacked DRAM 2GB TSV 16 ch×10 GB/s = 160 GB/s Simulated

Tetris [316] Stacked DRAM 2GB TSV 16 ch×8 GB/s = 128 GB/s Simulated

Quest [317] Stacked SRAM 96MB TCI 24 ch×1.2 GB/s = 28.8 GB/s Measured

N3XT [318] monolithic 3-D 4GB ILV 16 ch×48 GB/s = 768 GB/S Simulated

efficiency and throughput over the electrical domain. Accordingly, we will conclude this chapter by dis-
cussing the recent work that performs DNN processing in the optical domain, referred to as Optical Neural
Networks.

10.1 Processing Near Memory

High-density memories typically require a different process technology than processors and as a result are
often fabricated as separate chips; as a result, accessing high-density memories requires going off-chip. The
bandwidth and energy cost of accessing high-density off-chip memories are often limited by the number of
I/O pads per chip and the off-chip interconnect channel characteristics (i.e., its resistance, inductance, and
capacitance). Processing near memory aims to overcome these limitations by bringing the compute near
the high-density memory to reduce access energy and increase memory bandwidth. The reduction in access
energy is achieved by reducing the length of the interconnect between the memory and compute, while the
increase in bandwidth is primarily enabled by increasing the number of bits that can be accessed per cycle
by allowing for a wider interconnect and, to a lesser extent, by increasing the clock frequency, which is
made possible by the reduced interconnect length.

Various recent advanced memory technologies aim to enable processing near memory with differing in-
tegration costs. Table 10.1 summarizes some of these efforts, where high-density memories on the order
of tens of megabytes to gigabytes are connected to the compute engine at bandwidths of tens to hundreds
of gigabytes per second. Note that currently most academic evaluations of DNN systems using advanced
memory technologies have been based on simulations rather than fabrication and measurements.

In this section, we will describe the cost and benefits of each technology and provide examples of how they
have been used to process DNNs. The architectural design challenges of using processing-near-memory
include how to allocate data to memory since the access patterns for high-density memories are often limited
(e.g., data needs to be divided into different banks and vaults in the DRAM or stacked DRAM, respectively),
how to design the network-on-chip between the memory and PEs, how to allocate the chip area between on-
chip memory and compute now that off-chip communication less expensive, and how to design the memory
hierarchy and dataflow now that the data movement costs are different.

243

10.1. PROCESSING NEAR MEMORY Sze, Chen, Yang, Emer

10.1.1 Embedded High-Density Memories

Accessing data from off-chip memory can result in high energy cost as well as limited memory bandwidth
(due to limited data bus width due to number of I/O pads, and signaling frequency due to the channel charac-
teristics of the off-chip routing). Therefore, there has been a significant amount of effort toward embedding
high-density memory on-chip. This includes technology such as embedded DRAM (eDRAM) [319] as well
as embedded non-volatile (eNVM) [320], which includes embedded Flash (eFlash) [321], magnetic random-
access memory (MRAM) [322], resistive random-access memory (RRAM) [323, 324], and phase change
memory (PCRAM) [325].

In DNN processing, these high-density memories can be used to store tens of megabytes of weights and
activations on chip to reduce off-chip access. For instance, DaDianNao [151] uses 16×2MB eDRAM tiles
to store the weights and 2×2MB eDRAM tiles to store the input and output activations; furthermore, all these
tiles (each with 4096-bit rows) can be accessed in parallel, which gives extremely high memory bandwidth.2

The downside of eDRAM is that it has a lower density than off-chip DRAM and can increase the fabrication
cost of the chip. In addition, it has been reported that eDRAM scaling is slower than SRAM scaling [326],
and thus the density advantage of eDRAM over SRAM will reduce over time. In contrast, eNVMs have
gained popularity in recent years due to its increased density as well as its non-volatility properties and
reduction in standby power (e.g., leakage, refresh, etc.) compared to eDRAM [326].

10.1.2 Stacked Memory (3-D Memory)

Rather than integrating DRAM into the chip itself, the DRAM can also be stacked on top of the chip using
through-silicon vias (TSVs). This technology is often referred to as 3-D memory,3 and has been commer-
cialized in the form of Hybrid Memory Cube (HMC) [327] and High Bandwidth Memory (HBM) [121]. 3-D
memory delivers an order of magnitude higher bandwidth and reduces access energy by up to 5× relative to
existing 2-D DRAMs, as TSVs have lower capacitance than typical off-chip interconnects.

Recent works have explored the use of HMC for efficient DNN processing in a variety of ways. For instance,
Neurocube [315], shown in Figure 10.1(a), uses HMC to bring the memory and computation closer together.
Each DRAM vault (vertically stacked DRAM banks) is connected to a PE containing a buffer and several
MACs. A 2-D mesh network-on-chip (NoC) is used to connect the different PEs, allowing the PEs to access
data from different vaults. One major design decision involves determining how to distribute the weights
and activations across the different vaults to reduce the traffic on the NoC.

Another example that uses HMC is Tetris [316], which explores the use of HMC with the Eyeriss spatial
architecture and row-stationary dataflow. It proposes allocating more area to computation than on-chip mem-
ory (i.e., larger PE array and smaller global buffer) in order to exploit the low-energy and high-throughput
properties of the HMC. It also adapts the dataflow to account for the HMC and smaller on-chip memory.

SRAM can also be stacked on top of the chip to provide 10× lower latency compared to DRAM [317]. For
instance, Quest [317], shown in Figure 10.1(b), uses eight 3-D stacked SRAM dies to store both the weights

2DaDianNao [151] assumes that the DNN model can fit into the 32MB of eDRAM allocated to the weights. In practice, this
implies that the design either limits the size of DNN model, or requires access to off-chip memory if the size of the DNN model
exceeds the capacity of the eDRAM.

3Also referred to as “in-package” memory since both the memory and compute can be integrated into the same package.

244

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

(a) Neurocube (Figure from [315]) (b) Quest (Figure from [328])

Figure 10.1: Stacked memory systems. (a) DRAM using through-silicon vias (TSV) and (b) SRAM using
inductive coupling.

and the activations of the intermediate feature maps when processing layer by layer. The SRAM dies are
connected to the chip using inductive-coupling die-to-die wireless communication technology, known as a
ThruChip Interface (TCI) [329], which has lower integration cost than TSV.

The above 3-D memory designs involve using TSV or TCI to connect memory and logic dies that have been
separately fabricated. Recent breakthroughs in nanotechnology have made it feasible to directly fabricate
thin layers of logic and memory devices on top of each other, referred to as monolithic 3-D integration.
Interlayer vias (ILVs), which have several orders of magnitude denser vertical connectivity than TSV, can
then be used to connect the memory and compute. Current monolithic 3-D integration systems, such as
N3XT, use on-chip non-volatile memory (e.g., resistive RAM (RRAM), spin-transfer torque RAM (STT-
RAM) / magnetic RAM (MRAM), phase change RAM (PCRAM)), and carbon nanotube logic (CNFET).
Based on simulations, the energy-delay product of ILVs can be up to two orders of magnitude lower than
2-D systems on deep neural network workloads, compared to 8× for TSV [318].4

In order to fully understand the impact of near memory processing it is important to analyze the impact that
the added storage layer has on the mappings that are now available. Specifically, the new memories are
faster, but also smaller, so optimal mappings will be different.

10.2 Processing in Memory

While the previous section discussed methods to bring the compute near the memory, this section discusses
processing in memory, which brings the compute into the memory. We will first highlight the differences
between processing in memory and conventional architectures, then describe how processing in memory can
be performed using different memory technologies including NVM, SRAM, and DRAM. Finally, we will
highlight various design challenges associated with processing-in-memory accelerators that are commonly
found across technologies.

4The savings are highest for DNN models and configurations with low amounts of data reuse (e.g., FC layers with small batch
size) resulting in more data movement across ILV.

245

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

Weight
Memory

Compute (e.g., MAC)

High Bandwidth

Input
Activation
Memory

Low Bandwidth

A

B

(a) Conventional

Weight
Memory

+ Compute

D
AC

Input
Activation
Memory

ADC

Low Bandwidth

A

B

(b) Processing in memory

Figure 10.2: Comparison of conventional processing and processing in memory.

DNN processing can be performed using matrix-vector multiplication (see Figures 4.2 and 4.3), as discussed
in Chapter 4. For conventional architectures, both the input activation vector and the weight matrix are read
out from their respective memories and processed by a MAC array, as shown in Figure 10.2(a); the number
of weights that can be read at once is limited by the memory interface (e.g., the read out logic and the
number of memory ports). This limited memory bandwidth for the weights (e.g., a row of A weights per
cycle in Figure 10.2(b)) can also limit the number of MAC operations that can be performed in parallel (i.e.,
operations per cycle) and thus the overall throughput (i.e., operations per second).

Processing-in-memory architectures propose moving the compute into the memory that stores the weight
matrix, as shown in Figure 10.2(b). This can help reduce the data movement of the weights by avoiding the
cost of reading the weight matrix; rather than reading the weights, only the computed results such as the
partial sums or the final output activations are read out of the memory. Furthermore, processing in memory
architectures can also increase the memory bandwidth, as the number of weights that can be accessed in
parallel is no longer limited by the memory interface; in theory, the entire weight matrix (e.g., A × B in
Figure 10.2(b)) could be read and processed in parallel.

Figure 10.3 shows a weight-stationary dataflow architecture that is typically used for processing in memory.
The word lines (WLs) are used to deliver the input activations to the storage elements, and the bit lines (BLs)
are used to read the computed output activations or partial sums. The MAC array is implemented using the
storage elements (that store the weights), where a multiplication is performed at each storage element, and
the accumulation across multiple storage elements on the same column is performed using the bit line. In
theory, a MAC array of B rows of A elements can access all A× B weights at the same time, and perform
up to A dot products in parallel, where each sums B elements (i.e., A×B MAC operations per cycle).

Similar to other weight-stationary architectures, the input activations can be reused across the different
columns (up to A times for the example given in Figure 10.3), which reduces number of input activation
reads. In addition, since a storage element tends to be smaller in area than the logic for a digital MAC
(10 to 100× smaller in area and 3 to 10× smaller in edge length [330]), the routing capacitance to deliver
the input activations can also be reduced, which further reduces the energy cost of delivering the input
activations. Depending on the format of the inputs and outputs to the array, digital-to-analog converters
(DACs) and analog-to-digital converters (ADCs) may also be required to convert the word line and bit line
values, respectively; the cost of the DAC scales with the precision of the input activations driven on the word

246

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

Input
Activations

Memory

AD
C

Partial Sums or
Output Activations

Memory

Analog
interface/compute

(optional)

Columns in Array (A)

Rows in
Array (B)

Storage element
in Weight Memory

Digital logic (optional)

DAC
WL

BL

Figure 10.3: Typical dataflow for processing-in-memory accelerators.

247

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

line, while the cost of the ADC scales with the precision of the partial sums, which depends on the precision
of the weights and input activations, and the number of values accumulated on the bit line (up to B).5

An alternative way to view processing in memory is to use the loop nest representation introduced in Chap-
ter 5. Design 20 illustrates a processing-in-memory design for an FC layer with M output channels and
where the input activations are flattened along the input channel, height and width dimensions (CHW). The
computation take place in one cycle computing all the results in a single cycle in line 7. For this design,
some of the mapping constraints are that A ≥ M and B ≥ C × H ×W .6 Note, that when A 6= M or
B 6= C ×H ×W under-utilization will occur, as described in Section 10.2.4.

Design 20 FC layer for Processing in Memory

1 i = Array (CHW) # I n p u t a c t i v a t i o n s
2 f = Array (M, CHW) # F i l t e r w e i g h t s
3 o = Array (M) # Outpu t p a r t i a l sums
4

5 p a r a l l e l −f o r m in [0 , M) :
6 p a r a l l e l −f o r chw in [0 , CHW) :
7 o [m] += i [chw] * f [m, chw]

A processing in memory design can also handle convolutions, as illustrated in the loop nest in Design 21.
Here, we show a toy design of just a 1-D convolution with multiple input channels (C) and multiple output
channels (M). The entire computation takes Q steps as the only temporal step is the for loop (line 8).
Interpreting the activity in the body of the loop (line 10), we see that in each cycle all filter weights are used
(M×S×C) each as part a distinct MAC operation, the same input activation is used multiple times (C×S)
and multiple output partial sums are accumulated into (M). This design reflects the Toeplitz expansion of
the input activations (see Section 4.1), so the same input activations will be delivered multiple times, since
the same value for the input activation index w will be generated for different qs. For the processing in
memory convolution design, some of the mapping constraints are that A ≥ M and B ≥ C × S. Note, that
when A 6= M or B 6= C × S under-utilization will occur, as described in Section 10.2.4.

In the next few sections (Sections 10.2.1, 10.2.2, and 10.2.3), we will briefly describe how processing in
memory can be performed using different memory technologies. Section 10.2.4 will then give an overview
of some of the key design challenges and decisions that should be considered when designing processing-in-
memory accelerators for DNNs. For instance, many of these designs are limited to reduced precision (i.e.,
low bit-width) due to the non-idealities of the devices and circuits used for memories.

5The number of bits that an ADC can correctly resolve also depends on its thermal noise (typically some multiple of kT/C,
where k is the Boltzmann constant, T is the temperature, and C is the capacitance of the sampling capacitor). For instance, an N-bit
ADC has 2N−1 decision boundaries (see Section 7.2.1). However, if the thermal noise is large, the location of the 2N−1 decision
boundaries will move around, dynamically and randomly, and this will affect the resulting accuracy of the DNN being processed.
Therefore, designing a low noise ADC is an important consideration. Note that the thermal noise of the ADC scales with the power
consumption and the area of the ADC. Accordingly, it is important that the ADC’s thermal noise be considered when evaluating
the accuracy as demonstrated in [331, 332, 333], as the design of the ADC involves a trade-off between power, area, and accuracy.

6For this example, we disallow the cases where A < M or B < C × H ×W , since that would require multiple passes and
updates of the weights, which reduces the potential benefits of processing in memory.

248

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

Design 21 1-D Weight-Stationary Convolution Dataflow for Processing in Memory

1 i = Array (C , W) # I n p u t a c t i v a t i o n s
2 f = Array (M, C , S) # F i l t e r w e i g h t s
3 o = Array (M, Q) # Outpu t p a r t i a l sums
4

5 p a r a l l e l −f o r m in [0 , M) :
6 p a r a l l e l −f o r s in [0 , S) :
7 p a r a l l e l −f o r c in [0 , C] :
8 f o r q in [0 , Q) :
9 w = q + s

10 o [m, q] += i [c , w] * f [m, c , s]

10.2.1 Non-Volatile Memories (NVM)

Many recent works have explored enabling processing-in-memory using non-volatile memories (NVM) due
to their high density and thus potential for replacing off-chip memory and reducing off-chip data movement.
Advanced non-volatile high-density memories use programmable resistive elements, commonly referred to
as memristors [334], as storage elements. These NVM devices enable increased density since memory and
computation can be densely packed with a similar density to DRAM [335].7

Non-volatile memories exploit Ohm’s law by using the conductance (i.e., the inverse of the resistance)
of a device to represent a filter weight and the voltage across the device to represent the input activation
value. So the resulting current can be interpreted as the product (i.e., a partial sum). This is referred to as a
current-based approach. For instance, Figure 10.4(a) shows how a multiplication can be performed using the
conductance of the NVM device as the weight, and the voltage on the word line as the input activation, and
the current output to the bit line as the product of the two. The accumulation is done by summing the currents
on the bit line based on Kirchhoff’s current law. Alternatively, for Flash-based NVM, the multiplication is
performed using the current-voltage (IV) characteristics of the floating-gate transistor, where the threshold
voltage of the floating-gate transistor is set based on the weight, as shown in Figure 10.4(c). Similar to the
previously described approaches, a voltage proportional to the input activation can be applied across the
device, and the accumulation is performed by summing output current of the devices on the bit line.

NVM-based processing-in-memory accelerators have several unique challenges, as described in [339, 340].
First, the cost of programming the memristors (i.e., writing to non-volatile memory) can be much higher
than SRAM or DRAM; thus, typical solutions in this space require that the non-volatile memory to be
sufficiently large to hold all weights of the DNN model, rather than changing the weights in the memory for
each layer or filter during processing.8 As discussed in Chapter 3, this may reduce flexibility as it can limit
the size of the DNN model that the accelerator can support.

Second, the NVM devices can also suffer from device-to-device and cycle-to-cycle variations with nonlinear
conductance across the conductance range [339, 340, 341]. This affects the number of bits that can be stored
per device (typically 1 to 4) and the type of signaling used for the input and output activations. For instance,

7To improve density, the resistive devices can be inserted between the cross-point of two wires and in certain cases can avoid
the need for an access transistor [336]. Under this scenario, the device is commonly referred to as a cross-point element.

8This design choice to hold all weights of the DNN is similar to the approach taken in some of the FPGA designs such as
Brainwave [208] and FINN [225], where the weights are pinned on the on-chip memory of the FPGA during synthesis.

249

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

V1
G1

I1 = V1×G1

V2
G2

I2 = V2×G2

I = I1 + I2
= V1×G1 + V2×G2

(a) MAC operation using resistive NVM
devices.

(b) Example I-V curve of a resistive NVM device.
(Figure from [337])

VGS1

VGS2

IDS1(VGS1,VT1)

IDS2(VGS2,VT2)

I = IDS1 + IDS2
= IDS1(VGS1,VT1) + IDS2(VGS2,VT2)

(c) MAC operation using floating gate NVM devices. (d) I-V curve of floating gate device.

Figure 10.4: Performing a multiplication and accumulation using the storage element. Input activation
is encoded as a voltage amplitude (Vi). (a) For memristors, Gi is the conductance (i.e., 1/resistance) of a
resistive device set according to the weight, and bit line current I is the accumulated partial sum value [328].
(b) The current-voltage (I-V) characteristics of the resistive device. The slope of the curve is inversely
proportional to the resistance (recall R = V/I). Typically, the device can take on just two states: LRS
is the low resistive state (also referred to as RON) and HRS is the high resistive state (also referred to as
ROFF).(c) and (d) For floating-gate transistors, the multiplication is performed using its current-voltage
(I-V) characteristics, where the weight sets the threshold voltage (as illustrated by the different color lines
representing different threshold voltages), and bit line current I is the accumulated partial sum value [338].

250

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

rather than encoding the input activation in terms of voltage amplitude, the input can also be encoded in
time using pulse width modulation with a fixed voltage (i.e., a unary coding), and the resulting current can
be accumulated over time on a capacitor to generate the output voltage [342].

Finally, the NVM devices cannot have negative resistance, which presents a challenge for supporting neg-
ative weights. One approach is to represent signed weights using differential signaling that requires two
storage elements per weight; accordingly, the weights are often stored using two separate arrays [343]. An-
other approach is to avoid using signed weights. For instance, in the case of binary weights, rather than
representing the weights as [−1, 1] and performing binary multiplications, the weights can be represented
as [0, 1] and perform XNOR logic operations, as discussed in Chapter 7, or NAND logic operations, as
discussed in [344].

There are several popular candidates for NVM devices including phase change RAM (PCRAM), resistive
RAM (RRAM or ReRAM), conductive bridge RAM (CBRAM), and spin transfer torque magnetic RAM
(STT-MRAM) [345]. These devices have different trade-offs in terms of endurance (i.e., how many times
it can be written), retention time (i.e., how often it needs to be refreshed and thus how frequently it needs
to be written), write current (i.e., how much power is required to perform a write), area density (i.e., cell
size), variations, and speed. An in-depth discussion of how these device properties affect the performance
of DNN processing can be found in [340]; Gokmen et al. [342] flips the problem and describes how these
devices should be designed such that they can be better suited for DNN processing.9

Recent works on NVM-based processing-in-memory accelerators have reported results from both simula-
tion [328, 337, 346, 347] as well as fabricated test chips [348, 343]. While works based on simulation
demonstrate functionality on large DNN models such as variants of VGGNet [72] for image classification
on ImageNet, works based on fabricated test chips still demonstrate functionality on simple DNN mod-
els for digit classification on MNIST [348, 343]. Simulations often project capabilities beyond the current
state-of-the-art. For instance, while works based on simulation often assume that all 128 or 256 rows can
be activated at the same time, works based on fabricated test chips only activate up to 32 rows at once to
account for process variations and limitations in the read out circuits (e.g., ADC); these limitations will be
discussed more in Section 10.2.4. It should also be noted that fabricated test chips typically only use one bit
per memristor [348, 343, 349].

10.2.2 Static Random Access Memories (SRAM)

Many recent works have explored the use of the SRAM bit cell to perform computation. They can be loosely
classified into current-based and charge-based designs.

Current-based designs use the current-voltage (IV) characteristics of the bit cell to perform a multiplica-
tion, which is similar to the NVM current-based approach described in Section 10.2.1. For instance, Fig-
ure 10.5(a) shows how the input activation can be encoded as a voltage amplitude on the word line that
controls the current through the pull-down network of a bit cell (IBC) resulting in a voltage drop (VBL)
proportional to the word line voltage [350]. The current from multiple bit cells (across different rows on the
same column) add together on the bit line to perform the accumulation [350]. The resulting voltage drop on
the bit line is then proportional to the dot product of the weights and activations of the column.

9 [340, 342] also describe how these devices might be used for training DNNs if the weights can be updated in parallel and in
place within the memristor array.

251

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

+1

WL1

WLN

IBC

ΔVBL

WLDAC
code

1

0.02

0.04

0.06

WLDAC Code

ΔV
BL

 (V
)

0
5 10 15 20 25 30 35

Ideal transfer curve

Nominal transfer curve

-1

(a) Multiplication using a 6T SRAM bit-cell and accumulation by current summing on bit
lines. (Figure from [350])

W1,1,1
n

W1,1,1
n

IA1,1,1

IA1,2,1

8T Multiplying Bit Cell (M-BC)
1. Digital multiplication
2. Analog accumulation

Two modes:
o XNOR: 𝑂!,#,$% = 𝐼𝐴!,#,$⊕𝑊&,',$

%

o AND: 𝑂!,#,$% = 𝐼𝐴!,#,$	×	𝑊&,',$
%

(i.e., keep 𝐼𝐴!,#,$ high)

WLWL IAbx,y,z

Wbi,j,zn Wi,j,z
n

BL

Ox,y,zn

IAx,y,z

BLb

Pre-activation
PAn

(b) Multiplication using a 8T SRAM bit-cell and a local capacitor and accumu-
lation using charge sharing across local capacitors. (Figure from [351])

Figure 10.5: Performing a multiplication and accumulation using the storage element. (a) Multiplication
can be performed using a SRAM bit-cell by encoding the input activation as a voltage amplitude on the
word line that controls the current through the pull-down network of the bit cell (IBC) resulting in a voltage
drop (VBL) proportional to the word line voltage. If a zero (weight value of −1) is stored in the bit cell,
the voltage drop occurs on BL, while if a one (weight value of +1) is stored the voltage drop occurs on
BLB. The current from multiple bit-cells within a column add together. (b) Binary multiplication (XNOR)
is performed by connection transistors and local capacitor. Accumulation is performed by charge sharing
across local capacitors in bit-cells from the same column.

252

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

The above current-based approach is susceptible to the variability and nonlinearity of the word line voltage-
to-current relationship of the pull-down network in the bit cell; this create challenges in representing the
weights precisely. Charge-based approaches avoid this by using charge sharing for the multiplication, where
the computation based on the capacitance ratio between capacitors, which tends to be more linear and less
sensitive to variations.

Figure 10.5(b) shows how a binary multiplication (i.e., XNOR) via charge sharing can be performed by
conditionally charging up a local capacitor within a bit cell, based on the XNOR between the weight value
stored in the bit cell and the input activation value that determines the word line voltage [351]. Accumulation
can then be performed using charge sharing across the local capacitors of the bit cells on a bit line [351].
Other variants of this approach include performing the multiplication directly with the bit line [352], and
charge sharing across different bit lines to perform the accumulation [352, 353, 354].

One particular challenge that exists for SRAM-based processing-in-memory accelerators is maintaining bit
cell stability. Specifically, the voltage swing on the bit line typically needs to be kept low in order to avoid a
read disturb (i.e., accidentally flipping the value stored in the bit cell when reading). This limits the voltage
swing on the bit line, which affects the number of bits that can be accumulated on the bit line for the partial
sum; conventional SRAMs only resolve one bit on the bit line. One way to address this is by adding extra
transistors to isolate the storage node in the bit cell from the large swing of the bit line [352]; however, this
would increase the bit cell area and consequently reduce the overall area density.

Recent works on SRAM-based processing-in-memory accelerators have reported results from fabricated
test chips [350, 351, 352, 353, 354]. In these works, they demonstrate functionality on simple DNN models
for digit classification on MNIST, often using layer-by-layer processing, where the weights are updated in
the SRAM for each layer. Note that in these works, the layer shapes of the DNN model are often custom
designed to fit the array size of the SRAM to increase utilization; this may pose a challenge in terms of
flexibility, as discussed in Chapter 3.10

10.2.3 Dynamic Random Access Memories (DRAM)

Recent works have explored how processing in memory may be feasible using DRAM by performing bit-
wise logic operations when reading multiple bit cells. For instance, Figure 10.6 shows how AND and OR
operations can be performed by accessing three rows in parallel [355]. When three rows are accessed at the
same time, the output bit line voltage will depend on the average of the charge stored in the capacitors of
the bit cells in three rows (note that the charge stored in capacitor of a bit cell depends on if the bit cell is
storing a one or zero). Therefore, if the majority of the values of the bit cells are one (at least two out of
three), then the output is a one; otherwise, the output is a zero. More precisely, if X , Y , and Z represent the
logical values of the three cells, then the final state of the bit line is XY + Y Z +ZX . If Z = 1, then this is
effectively an OR operation between X and Y ; if Z = 0, then this is effectively an AND operation between
X and Y . The bit-wise logic operations can be built up into MAC operations across multiple cycles [356],
similar to bit-serial processing described in Chapter 7.

It is important to note that the architecture of processing in memory with DRAM differs from the processing
in memory with NVM and SRAM (described in Sections 10.2.1 and 10.2.2, respectively) in that: (1) for

10It should be noted that since SRAM is less dense than typical off-chip memory (e.g., DRAM), they are not designed to
replace off-chip memory or specifically addressing the “memory wall,” which pertains to off-chip memory bandwidth; instead,
most SRAM-based processing-in-memory accelerators focus on reducing the on-chip data movement.

253

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

0

0

0

X

Y

Z

1

1

1

X

Y

Z

t=0 t=1

1

1

1

X

Y

Z

t=2

VDD / 2 VDDVDD / 2 + d

SA

(a) Z=0 and AND (X=1, Y=1) = 1.

0

0

0

X

Y

Z

1

1

1

X

Y

Z

t=0 t=1

1

1

1

X

Y

Z

t=2

VDD / 2 0VDD / 2 - d

SA

(b) Z=0 and AND (X=1, Y=0) = 0.

0

0

0

X

Y

Z

t=0 t=1

1

1

1

X

Y

Z

1

1

1

X

Y

Z

t=2

VDD / 2 VDDVDD / 2 + d

SA

(c) Z=1 and OR (X=1, Y=0) = 1.

t=0 t=1

0

0

0

X

Y

Z

1

1

1

X

Y

Z

1

1

1

X

Y

Z

t=2

VDD / 2 0VDD / 2 - d

SA

(d) Z=1 and OR (X=0, Y=0) = 0.

Figure 10.6: Compute in DRAM based on charge sharing. Z controls whether an AND or OR is performed
on input X and Y . At time t = 0, the local capacitor of the bit cells for X , Y and Z are charged to VDD

for one and 0 for zero, and the bit line is pre-charged to VDD/2. At time t = 1, the accessed transistors to
the bit cells are enabled, and the capacitors are shorted together with the bit line. Charge sharing distributes
the charge between the capacitors to ensure that the voltage across each capacitor is the same; therefore
the resulting voltage on the bit line is proportional to the average charge across the three capacitors. If the
majority of the capacitors stored at one (i.e., VDD), then the voltage on the bit line would be above VDD/2
(i.e., +δ); otherwise, the voltage on the bit line drops below VDD/2 (i.e., −δ). At time t = 2, the sense
amplifiers (SA) on the bit line amplify the voltage to full swing (i.e., VDD/2+δ becomes VDD or VDD/2−δ
becomes 0), such that the output of the logic functionXY +Y Z+ZX can be resolved on the bit line. Note
that this form of computing is destructive, so we need to copy data beforehand.

254

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

DRAM, a bit-wise operation requires three storage elements from different rows, whereas for NVM and
SRAM, a MAC operation can be performed with a single storage element; and (2) for DRAM, only one
bit-wise operation is performed per bit line and the accumulation occurs over time, whereas for NVM and
SRAM, the accumulation of multiple MAC operations is performed on the bit line.11 As a result, for DRAM
the parallel processing can only be enabled across bit lines (A in Figure 10.3), since only one operation can
be performed per bit line, whereas for NVM and SRAM, the parallel processing can be enabled across
both the bit lines and the word lines (A and B in Figure 10.3), since multiple operations can be performed
per bit line. In addition, for DRAM, multiple cycles are required to build up a MAC operation from a
bit-wise logic operation, which reduces throughput. Thus, a challenge for DRAM-based processing-in-
memory accelerators is to ensure that there is sufficient parallelism across bit lines (A) to achieve the desired
improvements in throughput.

Other challenges for DRAM-based processing-in-memory accelerators include variations in the capacitance
in the different bit cells, changing charge in capacitor of bit cell over time due to leakage, and detecting small
changes in the bit line voltage. In addition, additional hardware may be required in the memory controller to
access multiple rows at once and/or to convert the bit-wise logic operations to MAC operation, all of which
can contribute to energy and area overhead.

While many of the recent works on DRAM-based processing-in-memory accelerators have been based on
simulation [355, 356], it should be noted that performing AND and OR operations have been demonstrated
on off-the shelf, unmodified, commercial DRAM [358]. This was achieved by violating the nominal timing
specification and activating multiple rows in rapid succession, which leaves multiple rows open simultane-
ously and enables charge sharing on the bit line.

10.2.4 Design Challenges

Processing-in-memory accelerators offer many potential benefits including reduced data movement of weights,
higher memory bandwidth by reading multiple weights in parallel, higher throughput by performing multi-
ple computations in parallel, and lower input activation delivery cost due to increased density of compute.
However, there are several key design challenges and decisions that need to be considered in practice. Ana-
log processing is typically required to bring the computation into the array of storage elements or into its
peripheral circuits; therefore the major challenges for processing in memory are its sensitivity to circuit
and device non-idealities (i.e., nonlinearity and process, voltage and temperature variations).12 Solutions
to these challenges often require trade offs between energy efficiency, throughput, area density, and accu-
racy,13 which reduce the achievable gains over conventional architectures. Architecture-level energy and
area estimation tools such as Accelergy can be used to help evaluate some of these trade offs [359].

In this section, when applicable we will use a toy example of a matrix vector multiplication based on a
FC layer shown in Figure 10.7. A loop-nest representation of the design is shown in Design 22, where

11This bit-wise (bit-serial) approach has also been explored for SRAM [357].
12Note that per chip training (i.e., different DNN weights per chip instance) may help address nonlinearity and chip to chip vari-

ability, but is expensive in practice. In addition, while adapting the weights can help address static variability, dynamic variability,
such as a change in temperature, remains a challenge.

13It should be noted that the loss in accuracy might not only be due to the reduced precision of the computations in the DNN
model (discussed in Chapter 7), which can be replicated on a conventional processor, but also due to circuit/device non-idealities and
limitations, including ADC precision and thermal noise. Unfortunately, these factors have rarely been decoupled during reporting
in literature, which can make it difficult to understand the design trade offs.

255

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

1 2 0 3

1 2 3 2

0 1 2 0
3 0 1 1

2 3 1 1

input fmap filter

= 7 13 10 5x

psum

M

CHW
CHW

N

M

N

(a) Decimal

01 10 00 11

01 10 11 10

00 01 10 00

11 00 01 01

10 11 01 01

= 00111 01101 01010 00101x

input fmap filter psum

(b) Binary

Figure 10.7: Toy example of matrix vector multiplication for this section. This example uses an FC layer
with N = 1, CHW = 4, and M = 4.

Design 22 Toy matrix multiply loop nest

1 i = Array (CHW) # I n p u t a c t i v a t i o n s
2 f = Array (CHW, M) # F i l t e r w e i g h t s
3 o = Array (M) # Outpu t p a r t i a l sums
4

5 p a r a l l e l −f o r m in [0 , M) :
6 p a r a l l e l −f o r chw in [0 , CHW) :
7 o [m] += i [chw] * f [chw , m]

CHW = M = 4. In theory, the entire computation should only require one cycle as all the 16 weights can
be accessed in parallel and all the 16 MAC operations can be performed in parallel.

Number of Storage Elements per Weight

Ideally, it would be desirable to be able to use one storage element (i.e., one device or bit cell) per weight to
maximize density. In practice, multiple storage elements are required per weight due to the limited precision
of each device or bit cell (typically on the order of 1 to 4 bits). As a result, multiple low-precision storage
elements are used to represent a higher precision weight. Figure 10.8 shows how this applies to our toy
example.

For non-volatile memories (e.g., RRAM), multiple storage elements can also be used per weight to reduce
the effect of devices variation (e.g., average 3× 3 devices per weight [341]) or to represent a signed weight

256

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1

1 0 1 1 0 1 0 1

1 2 3 2

0 1 2 0
3 0 1 1

2 3 1 1

4

4

4

8

Figure 10.8: Example of multiple storage elements per weight. In our toy example we use 2 bits per weight
so the storage cost goes from 4× 4 to 4× 8.

(i.e., since resistance is naturally non-negative, differential coding using two arrays is often used [341]).
Finally, in the case of SRAMs, often additional transistors are required in the bit cell to perform an operation,
which increases the area per bit cell. All of the above factors reduce the density and/or accuracy of the
system.

Array Size

Ideally, it would be desirable to have a large array size (A×B) in order to allow for high weight read band-
width and high throughput. In addition, a larger array size improves the area density by further amortizing
the cost of the peripheral circuits, which can be significant (e.g., the peripheral circuits, i.e., ADC and DAC,
can account for over 50% of the energy consumption of NVM-based designs [328, 348]). In practice, the
size of array limited by several factors.

1. The resistance and capacitance of word line and bit line wires, which impacts robustness, speed, and
energy consumption.

For instance, the bit line capacitance impacts robustness for charge domain approaches where charge
sharing is used for accumulation, as a large bit line capacitance makes it difficult to sense the charge
stored on the local capacitor in the bit cell; the charge stored on the local capacitor can be an input
value for DRAM-based designs or a product of weight and input activation for SRAM-based de-
signs. An example of using charge sharing to sense the voltage across a local capacitor is shown in
Figure 10.9. Specifically, the change in bit line voltage (∆VBL) is

∆VBL = (VDD − Vlocal)
Clocal

Clocal + CBL
(10.1)

where Clocal and CBL are the capacitance of the local capacitor and bit line, respectively, and Vlocal
is the voltage across the local capacitor (due to the charge stored on the local capacitor), and VDD is
the supply voltage. If the local capacitor is only storing binary values, then Vlocal can either be VDD

or 0. ∆VBL must be sufficiently large such that we can measure any change in Vlocal ; the more bits
we want to measure on the bit line (i.e., bits of the partial sum or output activation), the larger the
required ∆VBL. However, the size of Clocal is limited by the area density of the storage element; for
instance, in [351], Clocal is limited to 1.2fF. As a result, the minimum value of ∆VBL limits the size
of CBL, which limits the length of the bit line.

257

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

WL0=0
BL=VDD

Clocal

CBL

WL0=1
BL=VDD - DVBL

Clocal

CBLt=0 t=1

Vlocal=0

VDD

Figure 10.9: Change in bit line voltage ∆VBL is proportional to Clocal
Clocal+CBL

. The bit line is precharged to
VDD at t = 0, and we read the value on the local capacitor at t = 1.

Similarly, the bit line resistance impacts robustness for current domain approaches where current
summing is used for accumulation, as a large bit line resistance makes it difficult to sense the change
in the resistance in the NVM device, as shown in Figure 10.10. Specifically, the change in bit line
voltage due to change on the resistance is

∆VBL = VHIGH − VLOW = VinRBL
ROFF −RON

(RON +RBL)(ROFF +RBL)
(10.2)

whereRON andROFF are the minimum and maximum resistance of the NVM device (proportional to
the weight), respectively,RBL is the resistance of the bit line, and Vin is the input voltage (proportional
to the input activation). The ROFF − RON is limited by the NVM device [341]. As a result, the
minimum value of ∆VBL limits the size of RBL, which again limits the length of the bit line.

2. The utilization of the array will drop if the workload cannot fill entire column or entire row, as shown
in Figure 10.11(a). If the DNN model has few weights per filter and does not require large dot
products, e.g., C ×H ×W ≤ B, where C, H and W , are the dimensions of the filter (FC layer), and
B is the number of rows in the array, then there will be B −C ×H ×W idle rows in the array. If the
DNN model has few output channels and does not have many dot products, e.g., M ≤ A, where M is
the number of output channels and A is the number of columns in the array, then there will be A−M
idle columns in the array.14 This becomes more of an issue when processing efficient DNN models,
as described in Chapter 9, where the trend is to reduce the number of weights per filter. In digital
designs, flexible mapping can be used to increase utilization across different filter shapes, as discussed
in Chapter 6; however, this is much more challenging to implement in the analog domain. One option
is to redesign the DNN model specifically for processing in memory with larger filters and fewer

14Note that if C × H ×W > B or M > A, temporal tiling will need to be applied, as discussed in Chapter 4, and multiple
passes (including updating weights in the array) will be required to complete the MAC operations. Furthermore, recall that if the
completed sum (final psum) can be computed within a single pass (i.e., C × H ×W ≤ B), then precision of the ADC can be
reduced to the precision of the output activation. However, when multiple passes are needed, the ADC needs greater precision
because the results of each pass need to be added together to form the completed sum; otherwise, there may be an accuracy loss.

258

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

WL0=Vin
BL=VHIGH

RON

RBL

WL0=Vin
BL=VLOW

RBL

ROFF

Figure 10.10: Change in bit line voltage ∆VBL = VHIGH − VLOW is proportional to
RBL

ROFF−RON
(RON+RBL)(ROFF+RBL)

. RON (also referred to as LRS) and ROFF (also referred to as HRS) are the
minimum and maximum resistance of the NVM device, respectively.

layers [314], which increases utilization of the array and reduces input activation data movement;
however, the accuracy implications of such DNN models requires further study. Figure 10.11(b)
shows how this applies to our toy example.

As a result, typical fabricated array sizes range from 16b×64 [352] to 512b×512 [351] for SRAM and from
128×128 to 256×256 [341] for NVM. This limitation in array size affects throughput, area density and
energy efficiency. Multiple arrays can be used to scale up the design in order to fit the entire DNN Model
and increase throughput [328, 346]. However, the impact on amortizing the peripheral cost is minimal.
Furthermore, an additional NoC must be introduced between the arrays. Accordingly, the limitations on
energy efficiency and area density remain.

Number of Rows Activated in Parallel

Ideally, it would be desirable to use all rows (B) at once to maximize parallelism for high bandwidth and
high throughput. In practice, the number of rows that can be used at once is limited to by several factors.

1. The number of bits in the ADC, since more rows means more bits are required to resolve the accumu-
lation (i.e., the partial sums will have more bits). Some works propose using fewer bits for ADC than
the maximum required [360, 361], however, this can reduce the accuracy.15

2. The cumulative effect of the device variations can decrease the accuracy.
15The number of bits required by the ADC depends on the number of values being accumulated on the bit line (i.e., number of

rows activated in parallel), whether the values are sparse [360] (i.e., zero values will not contribute to the accumulated sum), and
whether the accumulated sum is a partial sum or a fully accumulated sum (i.e., it only needs to go through a nonlinear function to
become an output activation). Using less than the maximum required ADC bits for the fully accumulated sum has less impact on
accuracy than on the partial sum, since the fully accumulated sum is typically quantized to the bit-width of the input activation for
the next layer, as discussed in Chapter 7. However, the ability to fully accumulate the sum on a bit line depends on the whether the
number of rows in the array is large enough to hold all the weights for a given filter (i.e., B ≥ C ×H ×W).

259

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

Columns in Array (A)

Rows in
Array (B)

Storage
element

C
H

W

M

(a) Workload size versus array size

A=8

Storage
element

1 2 3 2

0 1 2 0

3 0 1 1

2 3 1 1

1

2

0

3

7 13 10 5

B=8

(b) Toy Example

Figure 10.11: Array utilization. (a) Impact of array size on utilization. (b) Example of utilization if size
of weight memory was 8 × 8. Even though in theory we should be able to perform 64 MAC operations in
parallel, only 16 of the storage elements are used (utilization of 25%); as a result, only 16 MAC operations
are performed in parallel, specifically, 4 dot products of 4 elements.

3. The maximum voltage drop or accumulated current that can be tolerated by the bit line.16 This can be
particularly challenging for advanced process technologies (e.g., 7 nm and below) due to the increase
in bit line resistance and increased susceptibility to electromigration issues, which limits the maximum
current on the bit line.

As a result, the typical number of rows activated in parallel is 64 [341] or below [343]. A digital accumulator
can be used after each ADC to accumulate across all B rows in B/64 cycles [341]; however, this reduces
throughput and increases energy due to multiple ADC conversions. To reduce the additional ADC con-
version, recent work has explored performing the accumulation in the analog domain [347]. Figure 10.12
shows how this applies to our toy example. Design 23 shows the corresponding loop nest, and illustrates the
multiple cycles it takes to perform all the MACs.

Number of Columns Activated in Parallel

Ideally, it would be desirable to use all columns (A) at once to maximize parallelism for high bandwidth
and high throughput. In practice, the number of columns that can be used are limited by whether the area
of ADC can pitch-match the width of the column, which is required for a compact area design; this can
be challenging when using high-density storage elements such as NVM devices. A common solution is
to time multiplex the ADC across a set of eight columns, which means that only A/8 columns are used in
parallel [341]; however, this reduces throughput. Figure 10.13 shows how this applies to our toy example,
and Design 24 shows the corresponding loop nest.

16For instance, for a 6T SRAM bit cell, a large voltage drop on the bit line can cause the bit cell to flip (i.e, an unwanted write
operation on the bit cell); using 8T bit cell can prevent this at the cost of increased area.

260

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

1 2 0 3

1 2 3 2

0 1 2 0

3 0 1 1
2 3 1 1

input fmap filter

= 1 4 7 2x

psum
(current cycle)

t=0

1 2 0 3

1 2 3 2

0 1 2 0
3 0 1 1

2 3 1 1

= 6 9 3 3xt=1 7 13 10 5

psum
(accumulated)

1 4 7 2

final psum

Figure 10.12: Example of limited number of rows activated in parallel. If the ADC is only 3-bits, only two
rows can be used at a time. It would take two cycles (time steps) to complete the computation. There are
two columns for psum in the figure: (1) psum (current cycle) corresponds to psum resulting from the dot
product computed at the current cycle; (2) psum (accumulated) corresponds to the accumulated value of the
psums across cycles. At t = 1, the psum of [6, 9, 3, 3] is computed and added (e.g., with a digital adder) to
the psum at t = 0 of [1, 4, 7, 2] to achieve the final psum [7, 13, 10, 5], as shown in the figure.

Design 23 Toy matrix multiply loop nest with limited number of parallel active rows

1 i = Array (CHW) # I n p u t a c t i v a t i o n s
2 f = Array (CHW, M) # F i l t e r w e i g h t s
3 o = Array (M) # Outpu t p a r t i a l sums
4

5 p a r a l l e l −f o r m in [0 , M) :
6 p a r a l l e l −f o r chw1 in [0 , CHW/ 2) :
7 f o r chw0 in [0 , 2) :
8 chw = chw1*2 + chw0
9 o [m] += i [chw] * f [chw , m]

Design 24 Toy matrix multiply loop nest with limited number of parallel active columns

1 i = Array (CHW) # I n p u t a c t i v a t i o n s
2 f = Array (CHW, M) # F i l t e r w e i g h t s
3 o = Array (CHW) # Outpu t p a r t i a l sums
4

5 p a r a l l e l −f o r m1 in [0 , M/ 2) :
6 p a r a l l e l −f o r chw in [0 , CHW) :
7 f o r m0 in [0 , 2) :
8 m = m1*2 + m0
9 o [m] += i [chw] * f [chw , m]

261

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

1 2 0 3

1 2 3 2

0 1 2 0
3 0 1 1

2 3 1 1

input fmap filter

= 7 13 10 5x

psum

t=0

1 2 0 3

1 2 3 2

0 1 2 0

3 0 1 1

2 3 1 1

= 7 13 10 5xt=1

Figure 10.13: Example of limited number of columns activated in parallel. If the width of an ADC is equal
to two columns, then the columns need to be time multiplexed. It would take two cycles to complete the
computation. If we combined this with the previously described parallel row limitations, it would take four
cycles to complete the computation.

Time to Deliver Input

Ideally, it would be desirable for all bits in the input activations to be encoded onto the word line in the
minimum amount of time to maximize throughput; a typical approach is to use voltage amplitude modula-
tion [350]. In practice, this can be challenging due to

1. the nonlinearity of devices makes encoding input value using voltage amplitude modulation difficult,
and

2. the complexity of the DAC that drives the word line scales with the number of bits

As a result, the input activations are often encoded in time (e.g., pulse-width modulation [353, 354] or
number of pulses [361]17), with a fixed voltage (DAC is only 1-bit) where the partial sum is determined by
accumulating charge over time; however, this reduces throughput.18 Figure 10.14 shows how this applies
to our toy example. One approach to reduce the complexity of the DAC or current accumulation time is
to reduced the precision of the input activations, as discussed in Chapter 7; however, this will also reduce
accuracy.

17Using pulses increases robustness to nonlinearity at the cost of increased switching activity.
18Alternatively, a single pulse can be used for the input activations if the weights are replicated across multiple rows (e.g., 2N−1

rows for an N-bit activation) [332]. This is a trade-off between time and area.

262

10.2. PROCESSING IN MEMORY Sze, Chen, Yang, Emer

1 1 0 1

1 2 3 2

0 1 2 0

3 0 1 1

2 3 1 1

input fmap filter

= 3 6 6 3xt=0

0 1 0 1

1 2 3 2

0 1 2 0

3 0 1 1
2 3 1 1

= 2 4 3 1xt=1

0 0 0 1

1 2 3 2

0 1 2 0

3 0 1 1

2 3 1 1

= 2 3 1 1xt=2

1 2 0 3
value

time

0 1 0 1 0 1 0 1

pulse width
modulation

5 10 9 4

7 13 10 5

final psum

psum
(current cycle)

psum
(accumulated)

3 6 6 3

Figure 10.14: Example of performing pulse-width modulation of the input activations with a 1-bit DAC. It
would take three cycles to complete the computation if all weights can be used at once. Specifically, the
input activations would be signaled across time as [1, 1, 0, 1] + [0, 1, 0, 1] + [0, 0, 0, 1] = [1, 2, 0, 3], where
the width of the pulse in time corresponds to the value of the input. There are two columns for psum in the
figure: (1) psum (current cycle) corresponds to psum resulting from the dot product computed at the current
cycle; (2) psum (accumulated) corresponds to the accumulated value of the psums across cycles. Note that if
we combined the limitation illustrated in this figure with the previously described parallel row and columns
limitations, it would take 12 cycles to complete the computation.

263

10.3. PROCESSING IN SENSOR Sze, Chen, Yang, Emer

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1

1 0 1 1 0 1 0 1

1 1 0 1 = 1 1 2 2 2 2 1 1xt=0

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0

1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

= 1 0 1 2 1 1 0 1xt=1 0 1 0 1

0 1 1 0 1 1 1 0

0 0 0 1 1 0 0 0

1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

= 3 1 4 5 3 4 1 3xt=2 0 0 0 1

7 13 10 5

<<1

+

<<1

+

<<1

+

<<1

+

t= 2 + time required to perform shift and add

input fmap filter

2 1 3 4 3 3 1 2

1 0 1 1 0 1 0 1

psum
(current cycle)

psum
(accumulated)

1 1 2 2 2 2 1 1

final psum

Figure 10.15: Example of time to compute MAC operation if each storage element can only perform one-bit
operations. It takes three cycles to deliver the input (similar to Figure 10.14). There are two columns for
psum in the figure: (1) psum (current cycle) corresponds to psum resulting from the dot product computed at
the current cycle; (2) psum (accumulated) corresponds to the accumulated value of the psums across cycles.
In addition, extra cycles are required at the end to combine accumulated bits from each bit line to form the
final output sum. The number of cycles required to perform the shift and add would depend on the number
of bit lines divide by the number of sets of shift-and-add logic.

Time to Compute a MAC

Ideally, it would be desirable for a MAC to be computed in a single cycle. In practice, the storage ele-
ment (bit cell or device) typically can only perform one-bit operations (e.g., XNOR and AND), and thus
multiple cycles are required to build up to a multi-bit operation (e.g., full adder and multiplication) [330].
Figure 10.15 shows how this applies to our toy example. This also requires additional logic after the ADC
to combine the one-bit operations into a multi-bit operation. However, this will reduce both the throughput,
energy and density.

10.3 Processing in Sensor

In certain applications, such as image processing, the data movement from the sensor itself can account
for a significant portion of the overall energy consumption. Accordingly, there has been work on bringing
the processing near or into the sensor, which is similar to the work on bringing the processing near or into
memory discussed in the previous sections. In both cases, the goal is to reduce the amount of data read out
of the memory/sensor and thus the number of ADC conversions, which can be expensive. Both cases also

264

10.4. PROCESSING IN THE OPTICAL DOMAIN Sze, Chen, Yang, Emer

Figure 10.16: Use ASP in front end to perform processing of first layer (Figure from [366])

require moving the computation into the analog domain and consequently suffer from increased sensitivity
to circuit non-idealities. While processing near memory and processing in memory focus on reducing data
movement of the weights of the DNN model, processing near sensor and processing in sensor focus on
reducing the data movement of the inputs to the DNN model.

Processing near sensor has been demonstrated for image processing applications, where computation can be
performed in the analog domain before the ADC in the peripheral of the image sensor. For instance, Zhang
et al. [362] and Lee et al. [363] use switched capacitors to perform 4-bit multiplications and 3-bit by 6-bit
MAC operations, respectively. RedEye [364] proposes performing the entire convolution layer (including
convolution, max pooling and quantization) in the analog domain before the ADC. It should be noted that
the results in [364] are based on simulations, while [362, 363] report measurements from fabricated test
chips.

It is also feasible to embed the computation not just before the ADC, but directly into the sensor itself
(i.e., processing in sensor). For instance, in [365] an Angle Sensitive Pixels sensor is used to compute the
gradient of the input, which along with compression, reduces the data movement from the sensor by 10×. In
addition, since the first layer of the DNN often outputs a gradient-like feature map, it may be possible to skip
the computations in the first layer, which further reduces energy consumption, as discussed in [366, 367].

10.4 Processing in the Optical Domain

Processing in the optical domain is an area of research that is currently being explored as an alternative to
all-electronic accelerators [368]. It is motivated, in part, by the fact that photons travel much faster than
electrons, and the cost of moving a photon can be independent of distance. Furthermore, multiplication can
be performed passively (for example with optical interference [369, 370], with reconfigurable filters [371],

265

10.4. PROCESSING IN THE OPTICAL DOMAIN Sze, Chen, Yang, Emer

(a) Optical neural network using optical interference units.
(Figure from [369])

Copies of I(k)

F1
(k) F2

(k) ... FN
(k)

�

I(k+1)

Fa
n-

ou
t

Multiplier,
integrator

BS

Source

�
�
�
�
�

Iw

Fwn

+

�

FwnIwI(k)

(input)

(weights)

(output)NL

(b) Optical neural network using coherent detection. BS:
beamsplitter; NL: nonlinearity. (Figure from [370])

Figure 10.17: Optical neural networks

or static phase masks [372]) and detection can occur at over 100 GHz. Thus, processing in the optical domain
may provide significant improvements in energy efficiency and throughput over the electrical domain.

Much of the recent work in the optical computing has focused on performing matrix multiplication, which
can be used for DNN processing; these works are often referred to as photonic accelerators or optical neural
networks. For instance, Shen et al. [369] present a programmable nanophotonic processor where the input
activations are encoded in the amplitudes of optical pulses (light) that travel through an array of on-chip
interferometers (composed of beamsplitters) that represent the weight matrix, where the weights determine
the amount of light that is passed to the output. This is effectively a weight-stationary dataflow. The
accumulation is performed based on the accumulated light from various waveguides at the photodetector.

Alternatively, Hamerly et al. [370], shown in Figure 10.17(b), demonstrate matrix multiplication based on
coherent detection, where both the weights and activations are encoded on-the-fly into light pulses, and are
interfered in free-space on a beamsplitter to perform multiplication. Since, in this scheme, there is no need
for on-chip interferometers (which have a large footprint), this approach may be more scalable, at the cost
of added complexity in alignment. This is effectively an output-stationary dataflow, where the output is
accumulated on the photodetector as an analog electronic signal.

There is negligible power loss in the computation when processing in the optical domain. Most of the power
dissipation occurs when converting between electrical and optical domains, specifically, in the converter to
generate the light and the detector to collect the photons. Therefore, similar to the processing in memory
work, the larger the array (or in this case the matrix), the more these conversion costs can be amortized.

Note, however, that while computing in the optical domain may be energy efficient, the non-idealities in the
optical devices (e.g., crosstalk between detectors, errors in phase encoding, photodetection noise) can lead
to a reduction in accuracy. To address this accuracy loss, Bernstein et al. [373] propose a hybrid electronic-
optics approach where the data transfer is done in the optical domain to exploit the distance-independent
cost of photons, while the computation itself (i.e., MAC operation) is performed digitally in the electrical
domain to avoid the non-idealities of the optical devices.

Recent works on optical neural networks have reported results based on simulations [370] or simulations

266

10.4. PROCESSING IN THE OPTICAL DOMAIN Sze, Chen, Yang, Emer

based on data that has been extrapolated from experimental results [369]. These works demonstrate func-
tionality on simple DNN models for digit classification and vowel recognition.

267

Chapter 11

Conclusion

The use of deep neural networks (DNNs) has recently seen explosive growth. They are currently widely used
for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics
and are often delivering better than human accuracy. However, while DNNs can deliver this outstanding
accuracy, it comes at the cost of high computational complexity. With the stagnation of improvements
in general-purpose computation [10], there is a movement toward more domain-specific hardware, and
in particular for DNN processing. Consequently, techniques that enable efficient processing of DNNs to
improve energy-efficiency and throughput without sacrificing accuracy with cost-effective hardware are
critical to expanding the deployment of DNNs in both existing and new domains.

Creating a system for efficient DNN processing should begin with understanding the current and future
applications and the specific computations required for both now and the potential evolution of those com-
putations. Therefore, this book surveyed a number of the current applications, focusing on computer vision
applications, the associated algorithms, and the data being used to drive the algorithms. These applications,
algorithms, and input data are experiencing rapid change. So extrapolating these trends to determine the
degree of flexibility desired to handle next generation computations becomes an important ingredient of any
design project.

During the design-space exploration process, it is critical to understand and balance the important system
metrics. For DNN computation these include the accuracy, energy, throughput and hardware cost. Evaluat-
ing these metrics is, of course, key, so this book surveyed the important components of a DNN workload.
In specific, a DNN workload has two major components. First, the workload consists of the “network ar-
chitecture” of the DNN model including the “shape” of each layer and the interconnections between layers.
These can vary both within and between applications. Second, the workload consists of the specific data
input to the DNN. This data will vary with the input set used for training or the data input during operation
for inference.

This book also surveyed a number of avenues that prior work have taken to optimize DNN processing. Since
data movement dominates energy consumption, a primary focus of some recent research has been to reduce
data movement while maintaining accuracy, throughput, and cost. This means selecting architectures with
favorable memory hierarchies like a spatial array, and developing dataflows that increase data reuse at the
low-cost levels of the memory hierarchy. We have included a taxonomy of dataflows and an analysis of their
characteristics. Understanding the throughput and energy efficiency of a DNN accelerator depends upon

268

Sze, Chen, Yang, Emer

how each DNN workload maps to the hardware. Therefore, we discussed the process of optimally mapping
workloads to the accelerator and the associated throughput and energy models.

The DNN domain also affords an excellent opportunity for hardware/algorithm co-design. Many works
have aimed to save storage space and energy by changing the representation of data values in the DNN. We
distill and present the key concepts from these approaches. Still other work saves energy and sometimes
increases throughput by increasing and then exploiting sparsity of weights and/or activations. We presented
a new abstract data representation that enables a systematic presentation of designs focused on exploiting
sparsity. Co-design needs to be aware of the impact on accuracy. Therefore, to avoid losing accuracy it is
often useful to modify the network or fine-tune the network’s weights to accommodate these changes. Thus,
this book both reviewed a variety of these techniques and discussed the frameworks that are available for
describing, running and training networks.

Finally, DNNs afford the opportunity to use mixed-signal circuit design and advanced technologies to im-
prove efficiency. These include using memristors for analog computation and 3-D stacked memory. Ad-
vanced technologies can also facilitate moving computation closer to the source by embedding computation
near or within the sensor and the memories. Of course, all of these techniques should also be considered
in combination, while being careful to understand their interactions and looking for opportunities for joint
hardware/algorithm co-optimization.

In conclusion, although much work has been done, DNNs remain an important area of research with many
promising applications and opportunities for innovation at various levels of hardware design. We hope this
book provides a structured way of navigating the complex space of DNN accelerators designs that will
inspire and lead to new advances in the field.

269

Bibliography

[1] J. Dean, “Machine learning for systems and systems for machine learning,” in Presentation at 2017
Conference on Neural Information Processing Systems, 2017.

[2] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016,
vol. 1.

[3] F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS class CS231n: Convolutional Neural Networks
for Visual Recognition,” http://cs231n.stanford.edu/.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May
2015.

[5] L. Deng, J. Li, J.-T. Huang, K. Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He, J. Williams et al.,
“Recent advances in deep learning for speech research at Microsoft,” in ICASSP, 2013.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional
Neural Networks,” in NeurIPS, 2012.

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for direct percep-
tion in autonomous driving,” in ICCV, 2015.

[8] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, “Dermatologist-
level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–
118, 2017.

[9] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the
game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan.
2016.

[10] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture: Domain-specific
hardware/software co-design, enhanced security, open instruction sets, and agile chip development,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), June
2018, pp. 27–29.

[11] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM J. Res. Dev.,
vol. 3, no. 3, pp. 210–229, July 2001.

270

http://cs231n.stanford.edu/

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[12] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson,
N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[13] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg,
J. L. McKinstry, T. Melano, D. R. Barch et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” Proceedings of the National Academy of Sciences, 2016.

[14] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning of hierarchical represen-
tations with convolutional deep belief networks,” Communications of the ACM, vol. 54, no. 10, pp.
95–103, 2011.

[15] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable effectiveness of data in
deep learning era,” in ICCV, 2017, pp. 843–852.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way
to prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.

[18] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks through FFTs,” in
ICLR, 2014.

[19] Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson, R. E. Howard,
and W. Hubbard, “Handwritten digit recognition: applications of neural network chips and automatic
learning,” IEEE Commun. Mag., vol. 27, no. 11, pp. 41–46, Nov 1989.

[20] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in 1960 IRE WESCON Convention Record,
1960.

[21] B. Widrow, “Thinking about thinking: the discovery of the LMS algorithm,” IEEE Signal Process.
Mag., 2005.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in CVPR,
2016.

[24] “Complete Visual Networking Index (VNI) Forecast,” Cisco, June 2016.

[25] J. Woodhouse, “Big, big, big data: higher and higher resolution video surveillance,” technol-
ogy.ihs.com, January 2016.

[26] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation,” in CVPR, 2014.

[27] J. Long, E. Shelhamer, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,”
in CVPR, 2015.

[28] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition in
videos,” in NeurIPS, 2014.

271

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[29] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen,
T. N. Sainath et al., “Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, 2012.

[30] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language
processing (almost) from scratch,” Journal of Machine Learning Research, vol. 12, no. Aug, pp.
2493–2537, 2011.

[31] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Se-
nior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” CoRR abs/1609.03499,
2016.

[32] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K. Yuen, Y. Hua, S. Gueroussov,
H. S. Najafabadi, T. R. Hughes et al., “The human splicing code reveals new insights into the genetic
determinants of disease,” Science, vol. 347, no. 6218, p. 1254806, 2015.

[33] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants with deep learning-based
sequence model,” Nature methods, vol. 12, no. 10, pp. 931–934, 2015.

[34] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey, “Predicting the sequence specificities of
dna-and rna-binding proteins by deep learning,” Nature biotechnology, vol. 33, no. 8, pp. 831–838,
2015.

[35] H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolutional neural network architectures for
predicting dna–protein binding,” Bioinformatics, vol. 32, no. 12, pp. i121–i127, 2016.

[36] M. Jermyn, J. Desroches, J. Mercier, M.-A. Tremblay, K. St-Arnaud, M.-C. Guiot, K. Petrecca, and
F. Leblond, “Neural networks improve brain cancer detection with raman spectroscopy in the presence
of operating room light artifacts,” Journal of Biomedical Optics, vol. 21, no. 9, pp. 094 002–094 002,
2016.

[37] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, “Deep learning for identifying metastatic
breast cancer,” arXiv preprint arXiv:1606.05718, 2016.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,” Journal of
artificial intelligence research, vol. 4, pp. 237–285, 1996.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing Atari with Deep Reinforcement Learning,” in NeurIPS Deep Learning Workshop, 2013.

[40] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev et al., “Grandmaster level in StarCraft II using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[41] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,”
Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40, 2016.

[42] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From Perception to Decision: A
Data-driven Approach to End-to-end Motion Planning for Autonomous Ground Robots,” in ICRA,
2017.

[43] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cognitive mapping and planning for
visual navigation,” in CVPR, 2017.

272

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[44] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies for autonomous aerial
vehicles with mpc-guided policy search,” in ICRA, 2016.

[45] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-agent, reinforcement learning for au-
tonomous driving,” in NeurIPS Workshop on Learning, Inference and Control of Multi-Agent Systems,
2016.

[46] N. Hemsoth, “The Next Wave of Deep Learning Applications,” Next Platform, September 2016.

[47] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze, “Towards closing the energy gap between HOG and
CNN features for embedded vision,” in ISCAS, 2017.

[48] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neurosurgeon: Col-
laborative intelligence between the cloud and mobile edge,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[49] F. V. Veen, “The Neural Network Zoo,” The Asimov Institute Blog, 2016. [Online]. Available:
https://www.asimovinstitute.org/neural-network-zoo/

[50] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The tensor algebra compiler,”
Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, pp. 1–29, 2017.

[51] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” in ICML,
2010.

[52] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic
models,” in ICML, 2013.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification,” in ICCV, 2015.

[54] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs),” ICLR, 2016.

[55] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2017.

[56] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur, “Improving deep neural network acoustic models
using generalized maxout networks,” in ICASSP, 2014.

[57] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, , C. Laurent, Y. Bengio, and A. Courville, “Towards
End-to-End Speech Recognition with Deep Convolutional Neural Networks,” in Interspeech, 2016.

[58] Shelhamer, Evan and Donahue, Jeff and Lon, Jon, “Deep Learning for Vision Using CNNs and Caffe:
A Hands-On Tutorial,” 2016.

[59] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell,
“Caffe: Convolutional architecture for fast feature embedding,” in ACM International Conference on
Multimedia, 2014.

[60] A. Dosovitskiy, J. T. Springenberg, M. Tatarchenko, and T. Brox, “Learning to generate chairs, tables
and cars with convolutional networks,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 39, no. 4, pp. 692–705, 2016.

273

https://www.asimovinstitute.org/neural-network-zoo/

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[61] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks for mid and high level
feature learning,” in ICCV, 2011, pp. 2018–2025.

[62] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” Distill, 2016.
[Online]. Available: http://distill.pub/2016/deconv-checkerboard

[63] D. Wofk, F. Ma, T. Yang, S. Karaman, and V. Sze, “FastDepth: Fast Monocular Depth Estimation on
Embedded Systems,” in ICRA, May 2019, pp. 6101–6108.

[64] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image super-
resolution,” in ECCV, 2014.

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing in-
ternal covariate shift,” in ICML, 2015.

[66] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How Does Batch Normalization Help Optimiza-
tion?(No, It Is Not About Internal Covariate Shift),” in NeurIPS, 2018.

[67] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–
6008.

[68] W. Shi, J. Caballero, L. Theis, F. Huszar, A. Aitken, C. Ledig, and Z. Wang, “Is the deconvolution
layer the same as a convolutional layer?” arXiv preprint arXiv:1609.07009, 2016.

[69] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran, “Deep convolutional neural net-
works for LVCSR,” in ICASSP, 2013.

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recog-
nition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.

[71] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “OverFeat: Integrated
Recognition, Localization and Detection using Convolutional Networks,” in ICLR, 2014.

[72] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recog-
nition,” in ICLR, 2015.

[73] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going Deeper With Convolutions,” in CVPR, 2015.

[74] M. Lin, Q. Chen, and S. Yan, “Network in Network,” in ICLR, 2014.

[75] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture
for computer vision,” in CVPR, 2016.

[76] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning,” in AAAI, 2017.

[77] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient descent is
difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166, 1994.

[78] G. Urban, K. J. Geras, S. E. Kahou, O. Aslan, S. Wang, R. Caruana, A. Mohamed, M. Philipose, and
M. Richardson, “Do Deep Convolutional Nets Really Need to be Deep and Convolutional?” ICLR,
2017.

274

http://distill.pub/2016/deconv-checkerboard

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[79] “Caffe LeNet MNIST,” http://caffe.berkeleyvision.org/gathered/examples/mnist.html.

[80] “Caffe Model Zoo,” http://caffe.berkeleyvision.org/model zoo.html.

[81] “Matconvnet Pretrained Models,” http://www.vlfeat.org/matconvnet/pretrained/.

[82] “TensorFlow-Slim image classification library,” https://github.com/tensorflow/models/tree/master/
slim.

[83] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional
networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 4700–4708.

[84] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in BMVC, 2017.

[85] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural
networks,” in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on. IEEE,
2017, pp. 5987–5995.

[86] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in
ICML, 2019.

[87] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating
errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[88] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–211, 1990.

[89] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504–507, 2006.

[90] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems,
2014, pp. 2672–2680.

[91] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmentation,” in ICCV,
2015.

[92] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb, “Learning from simulated
and unsupervised images through adversarial training,” in CVPR, 2017.

[93] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in ICCV, 2017.

[94] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[95] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: A 50.6 TOPS/W unified deep
neural network accelerator with 1b-to-16b fully-variable weight bit-precision,” in Solid-State Circuits
Conference-(ISSCC), 2018 IEEE International. IEEE, 2018, pp. 218–220.

[96] J. Giraldo and M. Verhelst, “Laika: A 5uw programmable lstm accelerator for always-on keyword
spotting in 65nm cmos,” in ESSCIRC 2018-IEEE 44th European Solid State Circuits Conference
(ESSCIRC). IEEE, 2018, pp. 166–169.

275

http://caffe.berkeleyvision.org/gathered/examples/mnist.html
http://caffe.berkeleyvision.org/model_zoo.html
http://www.vlfeat.org/matconvnet/pretrained/
https://github.com/tensorflow/models/tree/master/slim
https://github.com/tensorflow/models/tree/master/slim

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[97] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,”
arXiv preprint arXiv:1603.04467, 2016.

[98] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga et al., “PyTorch: An imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, 2019, pp. 8024–8035.

[99] “Deep Learning Frameworks,” https://developer.nvidia.com/deep-learning-frameworks.

[100] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Acceler-
ator for Deep Convolutional Neural Networks,” IEEE J. Solid-State Circuits, vol. 51, no. 1, 2017.

[101] “Open Neural Network Exchange (ONNX),” https://onnx.ai/.

[102] C. J. B. Yann LeCun, Corinna Cortes, “THE MNIST DATABASE of handwritten digits,” http://yann.
lecun.com/exdb/mnist/.

[103] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization of neural networks using
dropconnect,” in ICML, 2013.

[104] A. Krizhevsky, V. Nair, and G. Hinton, “The CIFAR-10 dataset,” https://www.cs.toronto.edu/∼kriz/
cifar.html.

[105] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A large data set for nonpara-
metric object and scene recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp.
1958–1970, 2008.

[106] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on cifar-10,” Unpublished
manuscript, vol. 40, 2010.

[107] B. Graham, “Fractional max-pooling,” arXiv preprint arXiv:1412.6071, 2014.

[108] “Pascal VOC data sets,” http://host.robots.ox.ac.uk/pascal/VOC/.

[109] “Microsoft Common Objects in Context (COCO) dataset,” http://mscoco.org/.

[110] “Google Open Images,” https://github.com/openimages/dataset.

[111] “YouTube-8M,” https://research.google.com/youtube8m/.

[112] “AudioSet,” https://research.google.com/audioset/index.html.

[113] “Standard Performance Evaluation Corporation(SPEC),” https://www.spec.org/.

[114] “MLPref,” https://mlperf.org/.

[115] “DeepBench,” https://github.com/baidu-research/DeepBench.

[116] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei, and D. Brooks, “Fathom: Reference workloads for modern
deep learning methods,” in IISWC, 2016, pp. 1–10.

[117] J. D. Little, “A proof for the queuing formula: L= λ w,” Operations research, vol. 9, no. 3, pp.
383–387, 1961.

276

https://developer.nvidia.com/deep-learning-frameworks
https://onnx.ai/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://host.robots.ox.ac.uk/pascal/VOC/
http://mscoco.org/
https://github.com/openimages/dataset
https://research.google.com/youtube8m/
https://research.google.com/audioset/index.html
https://www.spec.org/
https://mlperf.org/
https://github.com/baidu-research/DeepBench

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[118] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual performance model for
multicore architectures,” Communications of the ACM, vol. 52, no. 4, pp. 65–76, Apr 2009.

[119] B. Chen and J. M. Gilbert, “Introducing the CVPR 2018 On-Device Visual Intelligence
Challenge,” Google AI Blog, 2018. [Online]. Available: https://ai.googleblog.com/2018/04/
introducing-cvpr-2018-on-device-visual.html

[120] M. Horowitz, “Computing’s energy problem (and what we can do about it),” in IEEE ISSCC, 2014.

[121] J. Standard, “High bandwidth memory (HBM) DRAM,” JESD235, 2013.

[122] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang, B. Keller, A. Klinefelter,
N. Pinckney, P. Raina, and et al., “Simba: Scaling deep-learning inference with multi-chip-module-
based architecture,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’52. New York, NY, USA: Association for Computing Machinery,
2019, p. 14–27. [Online]. Available: https://doi-org.libproxy.mit.edu/10.1145/3352460.3358302

[123] S. Lie, “Wafer Scale Deep Learning,” in Hot Chips 31 Symposium (HCS), 2019 IEEE, 2019.

[124] S. Condon, “Facebook unveils Big Basin, new server geared for deep learning,” ZDNet, March 2017.

[125] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance cache replacement us-
ing re-reference interval prediction (rrip),” in ACM SIGARCH Computer Architecture News, vol. 38,
no. 3. ACM, 2010, pp. 60–71.

[126] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and optimizations of
blocked algorithms,” SIGPLAN Not., vol. 26, no. 4, pp. 63–74, Apr. 1991. [Online]. Available:
http://doi.acm.org/10.1145/106973.106981

[127] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints among variables of a program,”
in 5th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL’78).
Tucson, Arizona: ACM, 1978, pp. 84–96.

[128] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide: A
language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines,” in Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’13. New York, NY, USA: ACM, 2013, pp. 519–530.
[Online]. Available: http://doi.acm.org/10.1145/2491956.2462176

[129] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu, L. Ceze
et al., “{TVM}: An automated end-to-end optimizing compiler for deep learning,” in 13th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 18), 2018, pp. 578–594.

[130] J. Cong and B. Xiao, “Minimizing computation in convolutional neural networks,” in ICANN, 2014.

[131] D. H. Bailey, K. Lee, and H. D. Simon, “Using Strassen’s algorithm to accelerate the solution of
linear systems,” The Journal of Supercomputing, vol. 4, no. 4, pp. 357–371, 1991.

[132] S. Winograd, Arithmetic complexity of computations. Siam, 1980, vol. 33.

[133] A. Lavin and S. Gray, “Fast algorithms for convolutional neural networks,” in CVPR, 2016.

[134] Nvidia, “NVDLA Open Source Project,” 2017. [Online]. Available: http://nvdla.org/

277

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://doi-org.libproxy.mit.edu/10.1145/3352460.3358302
http://doi.acm.org/10.1145/106973.106981
http://doi.acm.org/10.1145/2491956.2462176
http://nvdla.org/

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[135] C. Dubout and F. Fleuret, “Exact acceleration of linear object detectors,” in ECCV, 2012.

[136] J. S. Lim, “Two-dimensional signal and image processing,” Englewood Cliffs, NJ, Prentice Hall,
1990, 710 p., 1990.

[137] “Intel Math Kernel Library,” https://software.intel.com/en-us/mkl.

[138] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, “cuDNN:
Efficient Primitives for Deep Learning,” arXiv preprint arXiv:1410.0759, 2014.

[139] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8,
1965.

[140] C. E. Leicerson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, and T. B.
Schardl, “There’s plenty of room at the top,” 2020, unpublished manuscript.

[141] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks,” in ISCA, 2016.

[142] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi, “A high-speed multiplier using a
redundant binary adder tree,” IEEE Journal of Solid-State Circuits, vol. 22, no. 1, pp. 28–34, 1987.

[143] C.-E. Lee, Y. S. Shao, A. Parashar, J. Emer, S. W. Keckler, and Z. Zhang, “Stitch-X: An Accelerator
Architecture for Exploiting Unstructured Sparsity in Deep Neural Networks,” in SysML Conference,
2018.

[144] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers et al., “In-datacenter performance analysis of a tensor processing unit,” in ISCA, 2017.

[145] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 G-ops/s Mobile Coprocessor
for Deep Neural Networks,” in CVPR Workshop, 2014.

[146] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto, and H. P. Graf, “A
Massively Parallel Coprocessor for Convolutional Neural Networks,” in ASAP, 2009.

[147] S. Park, K. Bong, D. Shin, J. Lee, S. Choi, and H.-J. Yoo, “A 1.93TOPS/W scalable deep learn-
ing/inference processor with tetra-parallel MIMD architecture for big-data applications,” in ISSCC,
2015.

[148] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A Dynamically Configurable Coproces-
sor for Convolutional Neural Networks,” in ISCA, 2010.

[149] V. Sriram, D. Cox, K. H. Tsoi, and W. Luk, “Towards an embedded biologically-inspired machine
vision processor,” in FPT, 2010.

[150] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini, “Origami: A Convolu-
tional Network Accelerator,” in GLVLSI, 2015.

[151] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam,
“DaDianNao: A Machine-Learning Supercomputer,” in MICRO, 2014.

[152] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: A Small-footprint
High-throughput Accelerator for Ubiquitous Machine-learning,” in ASPLOS, 2014.

278

https://software.intel.com/en-us/mkl

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[153] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based Accelerator Design
for Deep Convolutional Neural Networks,” in FPGA, 2015.

[154] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale
ConvNets,” in Symp. on VLSI, 2016.

[155] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam, “ShiDianNao:
Shifting Vision Processing Closer to the Sensor,” in ISCA, 2015.

[156] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep Learning with Limited Numeri-
cal Precision,” in ICML, 2015.

[157] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-centric accelerator design for
Convolutional Neural Networks,” in ICCD, 2013.

[158] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler,
and W. J. Dally, “Scnn: An accelerator for compressed-sparse convolutional neural networks,” in
ISCA, 2017.

[159] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-Efficient Reconfigurable Accel-
erator for Deep Convolutional Neural Networks,” in ISSCC, 2016.

[160] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible Accelerator for Emerging Deep
Neural Networks on Mobile Devices,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 2019.

[161] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible dataflow accelerator architec-
ture for convolutional neural networks,” in HPCA, 2017, pp. 553–564.

[162] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convolutional neural network architecture
with reconfigurable computation patterns,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 8, pp. 2220–2233, 2017.

[163] H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible dataflow mapping over dnn accel-
erators via reconfigurable interconnects,” in ASPLOS, 2018, pp. 461–475.

[164] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN accelerators,” in MICRO, 2016.

[165] Azizimazreah, Arash and Chen, Lizhong, “Shortcut Mining: Exploiting Cross-layer Shortcut Reuse
in DCNN Accelerators,” in HPCA, 2019.

[166] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara, M. Ikebe, T. Asai,
S. Takamaeda-Yamazaki, and M. Kuroda, T.and Motomura, “BRein Memory: A 13-Layer 4.2 K
Neuron/0.8 M Synapse Binary/Ternary Reconfigurable In-Memory Deep Neural Network Accelera-
tor in 65nm CMOS,” in Symp. on VLSI, 2017.

[167] J. Fowers and K. Ovtcharov and M. Papamichael and T. Massengill and M. Liu and D. Lo and S.
Alkalay and M. Haselman and L. Adams and M. Ghandi and S. Heil and P. Patel and A. Sapek and
G. Weisz and L. Woods and S. Lanka and S. K. Reinhardt and A. M. Caulfield and E. S. Chung and
D. Burger, “A Configurable Cloud-Scale DNN Processor for Real-Time AI,” in ISCA, 2018.

279

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[168] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram: Optimized coarse-grained
dataflow for scalable nn accelerators,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p. 807–820. [Online]. Available:
https://doi-org.libproxy.mit.edu/10.1145/3297858.3304014

[169] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S. W. Keckler, C. W.
Fletcher, and J. Emer, “Buffets: An efficient and composable storage idiom for explicit decoupled
data orchestration,” in Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS, 2019.

[170] J. Nickolls and W. J. Dally, “The GPU Computing Era,” IEEE Micro, vol. 30, no. 2, pp. 56–69, March
2010.

[171] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An analysis of accelerator cou-
pling in heterogeneous architectures,” in 2015 52nd ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), June 2015, pp. 1–6.

[172] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, K. Gururaj, and G. Reinman, “Accelerator-rich archi-
tectures: Opportunities and progresses,” in Proceedings of the Design Automation Conference (DAC),
2014.

[173] J. E. Smith, “Decoupled Access/Execute Computer Architectures,” in ISCA, April 1982, pp. 112–119.

[174] FIFO Generator v13.1: LogiCORE IP Product Guide, Vivado Design Suite, PG057, April 5, Xilinx,
2017.

[175] FIFO: Intel FPGA IP User Guide, Updated for Intel Quartus Prime Design Suite: 18.0, Intel, 2018.

[176] A. Yazdanbakhsh, H. Falahati, P. J. Wolfe, K. Samadi, N. S. Kim, and H. Esmaeilzadeh, “Ganax: A
unified mimd-simd acceleration for generative adversarial networks,” ISCA, 2018.

[177] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman,
L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-scale DNN processor for real-
time AI,” in The International Symposium on Computer Architecture (ISCA), 2018.

[178] T. J. Ham, J. L. Aragón, and M. Martonosi, “Desc: Decoupled supply-compute communication man-
agement for heterogeneous architectures,” in MICRO, December 2015, pp. 191–203.

[179] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A 0.26-to-10TOPS/W
subword-parallel dynamic-voltage-accuracy-frequency-scalable Convolutional Neural Network pro-
cessor in 28nm FDSOI,” in ISSCC, 2017, pp. 246–247.

[180] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, and S. Wei, “A 1.06-to-5.09 tops/w reconfigurable
hybrid-neural-network processor for deep learning applications,” in VLSI Circuits, 2017 Symposium
on. IEEE, 2017, pp. C26–C27.

[181] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “UNPU: A 50.6TOPS/W unified deep neural
network accelerator with 1b-to-16b fully-variable weight bit-precision,” in ISSCC, 2018, pp. 218–
220.

280

https://doi-org.libproxy.mit.edu/10.1145/3297858.3304014

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[182] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[183] Y.-H. Chen, J. Emer, and V. Sze, “Using Dataflow to Optimize Energy Efficiency of Deep Neural Net-
work Accelerators,” IEEE Micro’s Top Picks from the Computer Architecture Conferences, vol. 37,
no. 3, May-June 2017.

[184] R. M. Karp, R. E. Miller, and S. Winograd, “The Organization of Computations for Uniform Recur-
rence Equations,” Journal of the ACM, vol. 14, no. 3, pp. 563–590, 1967.

[185] L. Lamport, “The Parallel Execution of DO loops,” Communications of the ACM, vol. 17, no. 2, pp.
83–93, feb 1974.

[186] Wu, Yannan N. and Emer, Joel S. and Sze, Vivienne, “Accelergy: An Architecture-Level Energy Esti-
mation Methodology for Accelerator Designs,” in IEEE/ACM International Conference On Computer
Aided Design (ICCAD), 2019.

[187] B. Dally, “Power, Programmability, and Granularity: The Challenges of ExaScale Computing,” in
IEEE IPDPS, 2011.

[188] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi, and M. Horowitz, “Towards
Energy-proportional Datacenter Memory with Mobile DRAM,” in ISCA, 2012.

[189]

[190] B. Pradelle, B. Meister, M. Baskaran, J. Springer, and R. Lethin, “Polyhedral Optimization of Tensor-
Flow Computation Graphs,” in Workshop on Extreme-scale Programming Tools (ESPT), November
2017.

[191] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara, R. Venkatesan, B. Khailany,
S. W. Keckler, and J. Emer, “Timeloop: A Systematic Approach to DNN Accelerator Evaluation,” in
ISPASS, 2019.

[192] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe, “Halide:
A language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines,” SIGPLAN Not., vol. 48, no. 6, p. 519–530, Jun. 2013. [Online]. Available:
https://doi.org/10.1145/2499370.2462176

[193] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suriana, S. Kamil,
and S. P. Amarasinghe, “Tiramisu: A polyhedral compiler for expressing fast and portable
code,” in IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2019,
Washington, DC, USA, February 16-20, 2019, M. T. Kandemir, A. Jimborean, and T. Moseley, Eds.
IEEE, 2019, pp. 193–205. [Online]. Available: https://doi.org/10.1109/CGO.2019.8661197

[194] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolić, Digital integrated circuits: a design perspective.
Pearson Education Upper Saddle River, NJ, 2003, vol. 7.

[195] B. Ramkumar and H. M. Kittur, “Low-power and area-efficient carry select adder,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 2, pp. 371–375, Feb 2012.

[196] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding,” in ICLR, 2016.

281

https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1109/CGO.2019.8661197

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[197] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional Neural Networks using Logarithmic Data
Representation,” arXiv preprint arXiv:1603.01025, 2016.

[198] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “Lognet: Energy-Efficient Neural
Networks Using Logrithmic Computations,” in ICASSP, 2017.

[199] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented Approximation of Convolutional Neural
Networks,” in ICLR, 2016.

[200] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing Neural Networks
with the Hashing Trick,” in ICML, 2015.

[201] W. Dally, “High-Performance Hardware for Machine Learning,” Tutorial at Neurips 2015, 2015. [On-
line]. Available: https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.
pdf

[202] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Prentice-Hall, 1963.

[203] D. Williamson, “Dynamically scaled fixed point arithmetic,” in IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, 1991.

[204] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable, O. Elibol, S. Gray, S. Hall,
L. Hornof, A. Khosrowshahi, C. Kloss, R. Pai, and N. Rao, “Flexpoint: An adaptive numerical format
for efficient training of deep neural networks,” in NeurIPS, 2017.

[205] T. P. Morgan, “Nvidia Pushes Deep Learning Inference With New Pascal GPUs,” Next Platform,
September 2016.

[206] S. Higginbotham, “Google Takes Unconventional Route with Homegrown Machine Learning Chips,”
Next Platform, May 2016.

[207] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T. Vooturi, N. Jam-
malamadaka, J. Huang, H. Yuen et al., “A study of bfloat16 for deep learning training,” arXiv preprint
arXiv:1905.12322, 2019.

[208] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman et al., “Serving DNNs in Real Time at Datacenter Scale with Project Brain-
wave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[209] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural networks:
Training neural networks with low precision weights and activations,” The Journal of Machine Learn-
ing Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[210] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-Net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients,” arXiv preprint arXiv:1606.06160, 2016.

[211] V. Camus, L. Mei, C. Enz, and M. Verhelst, “Review and Benchmarking of Precision-Scalable
Multiply-Accumulate Unit Architectures for Embedded Neural-Network Processing,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 2019.

[212] D. Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “Dnpu: An energy-efficient deep-learning processor
with heterogeneous multi-core architecture,” IEEE Micro, vol. 38, no. 5, pp. 85–93, 2018.

282

https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[213] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Esmaeilzadeh, “Bit Fusion: Bit-
Level Dynamically Composable Architecture for Accelerating Deep Neural Network,” in ISCA, 2018.

[214] L. Mei, M. Dandekar, D. Rodopoulos, J. Constantin, P. Debacker, R. Lauwereins, and M. Verhelst,
“Sub-word parallel precision-scalable MAC engines for efficient embedded DNN inference,” in 2019
IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). IEEE, 2019,
pp. 6–10.

[215] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, “Stripes: Bit-serial deep
neural network computing,” in MICRO, 2016.

[216] S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and A. Moshovos, “Loom: Exploiting weight and activa-
tion precisions to accelerate convolutional neural networks,” in 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[217] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov, and A. Moshovos, “Bit-pragmatic
deep neural network computing,” in MICRO, 2017.

[218] S. Ryu, H. Kim, W. Yi, and J.-J. Kim, “BitBlade: Area and energy-efficient precision-scalable neural
network accelerator with bitwise summation,” in Proceedings of the 56th Annual Design Automation
Conference 2019, 2019, pp. 1–6.

[219] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural networks with weights and activa-
tions constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[220] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet Classification Using
Binary Convolutional Neural Networks,” in ECCV, 2016.

[221] F. Li and B. Liu, “Ternary weight networks,” in NeurIPS Workshop on Efficient Methods for Deep
Neural Networks, 2016.

[222] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low precision by half-wave gaussian
quantization,” in CVPR, 2017.

[223] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei, “An ultra-high energy-efficient reconfig-
urable processor for deep neural networks with binary/ternary weights in 28nm CMOS,” in Symp. on
VLSI, 2018.

[224] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An Ultra-Low Power Convolutional Neural
Network Accelerator Based on Binary Weights,” in ISVLSI, 2016.

[225] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers, “Finn: A
framework for fast, scalable binarized neural network inference,” in ISFPGA, 2017.

[226] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN: Wide Reduced-Precision Networks,” in
ICLR, 2018.

[227] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos, “Cnvlutin:
ineffectual-neuron-free deep neural network computing,” in ISCA, 2016.

[228] Y. Lin, C. Sakr, Y. Kim, and N. Shanbhag, “PredictiveNet: an energy-efficient convolutional neural
network via zero prediction,” in ISCAS, 2017.

283

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[229] M. Song, J. Zhao, Y. Hu, J. Zhang, and T. Li, “Prediction based Execution on Deep Neural Networks,”
in ISCA, 2018.

[230] V. Akhlaghi, A. Yazdanbakhsh, K. Samadi, R. K. Gupta, and H. Esmaeilzadeh, “SnaPEA: Predictive
Early Activation for Reducing Computation in Deep Convolutional Neural Networks,” in ISCA, 2018.

[231] W. B. Pennebaker and J. L. Mitchell, JPEG: Still image data compression standard. Springer
Science & Business Media, 1992.

[232] I. T. U. (ITU), “Recommendation ITU-T H.264: Advanced Video Coding for Generic Audiovisual
Services,” ITU-T, Tech. Rep., 2003.

[233] ——, “Recommendation ITU-T H.265: High Efficiency Video Coding,” ITU-T, Tech. Rep., 2013.

[234] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: a Deja vu-Free Differential Deep Neural Network
Accelerator ,” in MICRO, 2018.

[235] M. Riera, J. Maria Arnau, and A. Gonzalez, “Computation Reuse in DNNs by Exploiting Input
Similarity,” in ISCA, 2018.

[236] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, “Eva2: Exploiting Temporal Redundancy
in Live Computer Vision,” in ISCA, 2018.

[237] Y. Zhu, A. Samajdar, M. Mattina, and P. Whatmough, “Euphrates: Algorithm-SoC Co-Design for
Low-Power Mobile Continuous Vision,” in ISCA, 2018.

[238] Z. Zhang and V. Sze, “FAST: A framework to accelerate super-resolution processing on compressed
videos,” in CVPR Workshop on New Trends in Image Restoration and Enhancement, 2017.

[239] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848, 2017.

[240] T.-J. Yang, M. D. Collins, Y. Zhu, J.-J. Hwang, T. Liu, X. Zhang, V. Sze, G. Papandreou, and L.-C.
Chen, “Deeperlab: Single-shot image parser,” arXiv preprint arXiv:1902.05093, 2019.

[241] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth prediction with
fully convolutional residual networks,” in International Conference on 3D Vision (3DV), 2016, pp.
239–248.

[242] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[243] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural network,”
in ECCV, 2016.

[244] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time
single image and video super-resolution using an efficient sub-pixel convolutional neural network,”
in CVPR, 2016.

[245] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-
resolution,” in ECCV, 2016.

284

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[246] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher, “UCNN: Exploiting Computa-
tional Reuse in Deep Neural Networks via Weight Repetition,” in ISCA, 2018.

[247] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the state of neural network
pruning?” in MLSys, 2020.

[248] M. C. Mozer and P. Smolensky, “Using relevance to reduce network size automatically,” Connection
Science, vol. 1, no. 1, pp. 3–16, 1989.

[249] S. A. Janowsky, “Pruning versus clipping in neural networks,” Physical Review A, vol. 39, no. 12, p.
6600, 1989.

[250] E. D. Karnin, “A simple procedure for pruning back-propagation trained neural networks,” IEEE
transactions on neural networks, vol. 1, no. 2, pp. 239–242, 1990.

[251] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions on Neural Networks, vol. 4, no. 5, pp.
740–747, 1993.

[252] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Convolutional Neural Networks
using Energy-Aware Pruning,” in CVPR, 2017.

[253] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural networks,” arXiv preprint
arXiv:1902.09574, 2019.

[254] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable neural networks,”
in ICRL, 2019.

[255] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal Brain Damage,” in NeurIPS, 1990.

[256] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural
networks,” in NeurIPS, 2015.

[257] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam, “NetAdapt:
Platform-Aware Neural Network Adaptation for Mobile Applications,” in ECCV, 2018.

[258] T.-J. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the energy consumption of deep
neural networks,” in Asilomar Conference on Signals, Systems, and Computers, 2017.

[259] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “NeuralPower: Predict and deploy energy-
efficient convolutional neural networks,” in Proceedings of the Ninth Asian Conference on Machine
Learning, 2017.

[260] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep neural networks,”
in NeurIPS, 2016.

[261] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient convnets,”
ICLR, 2017.

[262] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural networks,” in ICCV,
2017.

[263] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep neural network com-
pression,” in CVPR, 2017.

285

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[264] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, “Scalpel: Customizing DNN
Pruning to the Underlying Hardware Parallelism,” in ISCA, 2017.

[265] X. Wang, J. Yu, C. Augustine, R. Iyer, and R. Das, “Bit prudent in-cache acceleration of deep convo-
lutional neural networks,” in HPCA, 2019.

[266] H. Kung, B. McDanel, and S. Q. Zhang, “Packing sparse convolutional neural networks for efficient
systolic array implementations: Column combining under joint optimization,” in ASPLOS, 2019.

[267] A. Renda, J. Frankle, and M. Carbin, “Comparing Rewinding and Fine-tuning in Neural Network
Pruning,” in ICLR, 2020.

[268] V. Tresp, R. Neuneier, and H.-G. Zimmermann, “Early brain damage,” in NeurIPS, 1997.

[269] X. Jin, X. Yuan, J. Feng, and S. Yan, “Training Skinny Deep Neural Networks with Iterative Hard
Thresholding Methods,” arXiv preprint arXiv:1607.05423, 2016.

[270] Y. Guo, A. Yao, and Y. Chen, “Dynamic Network Surgery for Efficient DNNs,” in NeurIPS, 2016.

[271] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the value of network pruning,” in
ICRL, 2019.

[272] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in ICLR, 2016.

[273] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format Abstraction for Sparse Tensor Algebra Compil-
ers,” Proceedings of the ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 123:1–123:30,
nov 2018.

[274] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse tensor,” in Workshop on
Irregular Applications: Architectures and Algorithms. ACM, 2015, pp. 1–7.

[275] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel, E. Solomonik, J. Emer, and
C. W. Fletcher, “ExTensor: An Accelerator for Sparse Tensor Algebra,” in MICRO, 2019.

[276] N. Sato and W. F. Tinney, “Techniques for Exploiting the Sparsity of the Network Admittance Ma-
trix,” IEEE Transactions on Power Apparatus and Systems, vol. 82, no. 69, pp. 944–950, 1963.

[277] A. Buluç and J. R. Gilbert, “On the representation and multiplication of hypersparse matrices,” in
IEEE International Symposium on Parallel and Distributed Processing, (IPDPS)., apr 2008, pp. 1–
11.

[278] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27,
no. 3, pp. 379–423, jul 1948.

[279] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “Sparten: A sparse tensor accelerator
for convolutional neural networks,” in MICRO, 2019.

[280] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen, “Cambricon-x: An
accelerator for sparse neural networks,” in ISCA, 2016.

[281] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “EIE: efficient inference
engine on compressed deep neural network,” in ISCA, 2016.

286

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[282] A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Poulos, M. Mahmoud, S. Sharify, M. Nikolic, K. Siu,
and A. Moshovos, “Bit-tactical: A software/hardware approach to exploiting value and bit sparsity in
neural networks,” in ASPLOS, 2019.

[283] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer, “SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and <1MB model size,” ICLR, 2017.

[284] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional neural
network for mobile devices,” in CVPR, June 2018.

[285] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2018.

[286] F. Yu, D. Wang, E. Shelhamer, and T. Darrell, “Deep layer aggregation,” in CVPR, June 2018.

[287] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting Linear Structure Within
Convolutional Networks for Efficient Evaluation,” in NeurIPS, 2014.

[288] V. Lebedev, Y. Ganin, M. Rakhuba1, I. Oseledets, and V. Lempitsky, “Speeding-Up Convolutional
Neural Networks Using Fine-tuned CP-Decomposition,” ICLR, 2015.

[289] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of Deep Convolutional
Neural Networks for Fast and Low Power Mobile Applications,” in ICLR, 2016.

[290] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement Learning,” in ICLR, 2017.

[291] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin, “Large-scale
evolution of image classifiers,” in ICML, 2017.

[292] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable Architecture Search,” ICLR, 2019.

[293] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, “Understanding and simplifying
one-shot architecture search,” in ICML, 2018.

[294] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet: Platform-aware
neural architecture search for mobile,” CoRR, vol. abs/1807.11626, 2018. [Online]. Available:
http://arxiv.org/abs/1807.11626

[295] L.-C. Chen, M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam, and J. Shlens,
“Searching for efficient multi-scale architectures for dense image prediction,” in NeurIPS, 2018.

[296] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable
image recognition,” in CVPR, June 2018.

[297] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-wise neural network architecture
generation,” in CVPR, June 2018.

[298] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, “Efficient architecture search by network transfor-
mation,” in AAAI, 2018.

[299] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, “Hierarchical Representations
for Efficient Architecture Search,” in ICLR, 2018.

[300] A. Zela, A. Klein, S. Falkner, and F. Hutter, “Towards automated deep learning: Efficient joint neural
architecture and hyperparameter search,” in ICML 2018 AutoML Workshop, Jul. 2018.

287

http://arxiv.org/abs/1807.11626

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[301] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classifier architecture
search,” in AAAI, 2019.

[302] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. Yuille, and F.-F. Li, “Auto-deeplab: Hierarchical
neural architecture search for semantic image segmentation,” in CVPR, 2019.

[303] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter, “Towards automatically-tuned
neural networks,” in Proceedings of the Workshop on Automatic Machine Learning, ser. Proceedings
of Machine Learning Research, F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., vol. 64. New York,
New York, USA: PMLR, 24 Jun 2016, pp. 58–65.

[304] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi, “Morphnet: Fast & simple
resource-constrained structure learning of deep networks,” in CVPR, June 2018.

[305] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y. Hu, Y. Wu, Y. Jia, P. Vajda,
M. Uyttendaele, and N. K. Jha, “Chamnet: Towards efficient network design through platform-aware
model adaptation,” in CVPR, June 2019.

[306] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer, “Fbnet:
Hardware-aware efficient convnet design via differentiable neural architecture search,” CoRR, vol.
abs/1812.03443, 2018. [Online]. Available: http://arxiv.org/abs/1812.03443

[307] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search on target task and
hardware,” in ICLR, 2019.

[308] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasude-
van, Q. V. Le, and H. Adam, “Searching for mobilenetv3,” in ICCV, 2019.

[309] C. Buciluă, R. Caruana, and A. Niculescu-Mizil, “Model Compression,” in SIGKDD, 2006.

[310] L. Ba and R. Caurana, “Do Deep Nets Really Need to be Deep?” NeurIPS, 2014.

[311] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network,” in NeurIPS
Deep Learning Workshop, 2014.

[312] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for Thin
Deep Nets,” ICLR, 2015.

[313] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques to improve low-
precision network accuracy,” in ICLR, 2018.

[314] T.-J. Yang and V. Sze, “Design Considerations for Efficient Deep Neural Networks on Processing-in-
Memory Accelerators,” in IEDM, 2019.

[315] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: A programmable
digital neuromorphic architecture with high-density 3D memory,” in ISCA, 2016.

[316] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scalable and Efficient Neural
Network Acceleration with 3D Memory,” in ASPLOS, 2017.

[317] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, M. Hamada, T. Kuroda, and M. Mo-
tomura, “QUEST: Multi-Purpose Log-Quantized DNN Inference Engine Stacked on 96-MB 3-D
SRAM Using Inductive Coupling Technology in 40-nm CMOS,” IEEE Journal of Solid-State Cir-
cuits, pp. 1–11, 2018.

288

http://arxiv.org/abs/1812.03443

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[318] M. M. S. Aly, T. F. Wu, A. Bartolo, Y. H. Malviya, W. Hwang, G. Hills, I. Markov, M. Wootters, M. M.
Shulaker, H.-S. P. Wong et al., “The N3XT approach to energy-efficient abundant-data computing,”
Proceedings of the IEEE, vol. 107, no. 1, pp. 19–48, 2019.

[319] D. Keitel-Schulz and N. Wehn, “Embedded DRAM development: Technology, physical design, and
application issues,” IEEE Des. Test. Comput., vol. 18, no. 3, pp. 7–15, 2001.

[320] A. Chen, “A review of emerging non-volatile memory (nvm) technologies and applications,” Solid-
State Electronics, vol. 125, pp. 25–38, 2016.

[321] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash memories. Springer Science & Business
Media, 2013.

[322] O. Golonzka, J.-G. Alzate, U. Arslan, M. Bohr, P. Bai, J. Brockman, B. Buford, C. Connor, N. Das,
B. Doyle et al., “MRAM as embedded non-volatile memory solution for 22FFL FinFET technology,”
in IEDM, 2018.

[323] S.-S. Sheu, M.-F. Chang, K.-F. Lin, C.-W. Wu, Y.-S. Chen, P.-F. Chiu, C.-C. Kuo, Y.-S. Yang, P.-
C. Chiang, W.-P. Lin et al., “A 4Mb embedded SLC resistive-RAM macro with 7.2 ns read-write
random-access time and 160ns MLC-access capability,” in ISSCC, 2011.

[324] O. Golonzka, U. Arslan, P. Bai, M. Bohr, O. Baykan, Y. Chang, A. Chaudhari, A. Chen, N. Das,
C. English et al., “Non-Volatile RRAM Embedded into 22FFL FinFET Technology,” in 2019 Sympo-
sium on VLSI Technology, 2019.

[325] G. De Sandre, L. Bettini, A. Pirola, L. Marmonier, M. Pasotti, M. Borghi, P. Mattavelli, P. Zuliani,
L. Scotti, G. Mastracchio et al., “A 90nm 4Mb embedded phase-change memory with 1.2 V 12ns
read access time and 1MB/s write throughput,” in ISSCC, 2010.

[326] J. T. Pawlowski, “Vision of Processor-Memory Systems,” Keynote at MICRO-48, 2015. [Online].
Available: https://www.microarch.org/micro48/files/slides/Keynote-III.pdf

[327] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architecture increases density and
performance,” in Symp. on VLSI, 2012.

[328] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams,
and V. Srikumar, “ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars,” in ISCA, 2016.

[329] D. Ditzel, T. Kuroda, and S. Lee, “Low-cost 3d chip stacking with thruchip wireless connections,” in
Hot Chips-A Symposium on High Performance Chips (Aug. 2014), 2014.

[330] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang, and P. Deaville, “In-memory
computing: Advances and prospects,” IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55,
2019.

[331] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An Always-On 3.8 µJ/86% CIFAR-
10 Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS,” IEEE Journal
of Solid-State Circuits, vol. 54, no. 1, pp. 158–172, 2018.

[332] D. Bankman, J. Messner, A. Gural, and B. Murmann, “RRAM-Based In-Memory Computing for
Embedded Deep Neural Networks,” in Asilomar Conference on Signals, Systems, and Computers,
2019.

289

https://www.microarch.org/micro48/files/slides/Keynote-III.pdf

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[333] S. Ma, D. Brooks, and G.-Y. Wei, “A binary-activation, multi-level weight RNN and training algo-
rithm for processing-in-memory inference with eNVM,” arXiv preprint arXiv:1912.00106, 2019.

[334] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. Circuit Theory, vol. 18, no. 5, pp.
507–519, 1971.

[335] L. Wilson, “International technology roadmap for semiconductors (ITRS),” Semiconductor Industry
Association, 2013.

[336] J. Liang and H.-S. P. Wong, “Cross-point memory array without cell selectors—Device characteristics
and data storage pattern dependencies,” IEEE Transactions on Electron Devices, vol. 57, no. 10, pp.
2531–2538, 2010.

[337] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A Novel Processing-In-
Memory Architecture for Neural Network Computation in ReRAM-based Main Memory,” in ISCA,
2016.

[338] X. Guo, F. M. Bayat, M. Bavandpour, M. Klachko, M. Mahmoodi, M. Prezioso, K. Likharev, and
D. Strukov, “Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier
based on embedded nor flash memory technology,” in IEDM, 2017.

[339] S. B. Eryilmaz, S. Joshi, E. Neftci, W. Wan, G. Cauwenberghs, and H.-S. P. Wong, “Neuromorphic
architectures with electronic synapses,” in ISQED, 2016.

[340] W. Haensch, T. Gokmen, and R. Puri, “The Next Generation of Deep Learning Hardware: Analog
Computing,” Proceedings of the IEEE, pp. 1–15, 2018.

[341] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Proceedings of the IEEE,
vol. 106, no. 2, pp. 260–285, 2018.

[342] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training with resistive cross-point
devices: design considerations,” Frontiers in neuroscience, vol. 10, p. 333, 2016.

[343] W. Chen, K. Li, W. Lin, K. Hsu, P. Li, C. Yang, C. Xue, E. Yang, Y. Chen, Y. Chang, T. Hsu,
Y. King, C. Lin, R. Liu, C. Hsieh, K. Tang, and M. Chang, “A 65nm 1Mb nonvolatile computing-
in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge proces-
sors,” in ISSCC, 2018.

[344] H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “NAND-Net: Minimizing Computational Complexity of
In-Memory Processing for Binary Neural Networks,” in HPCA, 2019.

[345] Lu, Darsen, “Tutorial on Emerging Memory Devices,” 2016.

[346] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based accelerator for deep
learning,” in HPCA, 2017.

[347] T. Chou, W. Tang, J. Botimer, and Z. Zhang, “CASCADE: Connecting RRAMs to Extend Analog
Dataflow In An End-To-End In-Memory Processing Paradigm,” in MICRO, 2019.

[348] F. Su, W.-H. Chen, L. Xia, C.-P. Lo, T. Tang, Z. Wang, K.-H. Hsu, M. Cheng, J.-Y. Li, Y. Xie et al.,
“A 462GOPs/J RRAM-Based Nonvolatile Intelligent Processor for Energy Harvesting IoE System
Featuring Nonvolatile Logics and Processing-In-Memory,” in VLSI Technology, 2017 Symposium on,
2017, pp. T260–T261.

290

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[349] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K. Likharev, and D. B. Strukov, “Training
and operation of an integrated neuromorphic network based on metal-oxide memristors,” Nature, vol.
521, no. 7550, pp. 61–64, 2015.

[350] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier implemented in a standard 6T
SRAM array,” in Symp. on VLSI, 2016.

[351] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A Mixed-Signal Binarized Convolutional-
Neural-Network Accelerator Integrating dense Weight Storage and Multiplication for Reduced Data
Movement,” in Symp. on VLSI, 2018.

[352] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient SRAM with embedded convo-
lution computation for low-power CNN-based machine learning applications,” in ISSCC, 2018, pp.
488–490.

[353] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A Multi-Functional In-Memory Inference
Processor Using a Standard 6T SRAM Array,” IEEE Journal of Solid-State Circuits, vol. 53, no. 2,
pp. 642–655, 2018.

[354] M. Kang, S. Lim, S. Gonugondla, and N. R. Shanbhag, “An In-Memory VLSI Architecture for Con-
volutional Neural Networks,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
2018.

[355] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B.
Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for bulk bitwise operations using com-
modity dram technology,” in MICRO, 2017.

[356] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “DRISA: A DRAM-based Reconfig-
urable In-Situ Accelerator,” in MICRO, 2017.

[357] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw, and R. Das,
“Neural cache: Bit-serial in-cache acceleration of deep neural networks,” in ISCA, 2018.

[358] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “ComputeDRAM: In-memory compute using off-the-
shelf DRAMs,” in MICRO, 2019.

[359] Wu, Yannan N. and Sze, Vivienne and Emer, Joel S. , “An Architecture-Level Energy and Area
Estimator for Processing-In-Memory Accelerator Designs,” in ISPASS, 2020.

[360] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N. Verma, “A microprocessor implemented in 65nm
cmos with configurable and bit-scalable accelerator for programmable in-memory computing,” arXiv
preprint arXiv:1811.04047, 2018.

[361] Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao, Y. Wang, and J. Chang,
“A 351TOPS/W and 372.4GOPS Compute-in-Memory SRAM Macro in 7nm FinFET CMOS for
Machine-Learning Applications,” in ISSCC, 2020.

[362] J. Zhang, Z. Wang, and N. Verma, “A matrix-multiplying ADC implementing a machine-learning
classifier directly with data conversion,” in ISSCC, 2015.

[363] E. H. Lee and S. S. Wong, “A 2.5 GHz 7.7 TOPS/W switched-capacitor matrix multiplier with co-
designed local memory in 40nm,” in ISSCC, 2016.

291

BIBLIOGRAPHY Sze, Chen, Yang, Emer

[364] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “RedEye: analog ConvNet image sensor
architecture for continuous mobile vision,” in ISCA, 2016.

[365] A. Wang, S. Sivaramakrishnan, and A. Molnar, “A 180nm CMOS image sensor with on-chip opto-
electronic image compression,” in CICC, 2012.

[366] H. Chen, S. Jayasuriya, J. Yang, J. Stephen, S. Sivaramakrishnan, A. Veeraraghavan, and A. Molnar,
“ASP Vision: Optically Computing the First Layer of Convolutional Neural Networks using Angle
Sensitive Pixels,” in CVPR, 2016.

[367] A. Suleiman and V. Sze, “Energy-efficient HOG-based object detection at 1080HD 60 fps with multi-
scale support,” in SiPS, 2014.

[368] Q. Cheng, J. Kwon, M. Glick, M. Bahadori, L. P. Carloni, and K. Bergman, “Silicon photonics
codesign for deep learning,” Proceedings of the IEEE, pp. 1–22, 2020.

[369] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao,
H. Larochelle, D. Englund et al., “Deep learning with coherent nanophotonic circuits,” Nature Pho-
tonics, vol. 11, no. 7, p. 441, 2017.

[370] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, “Large-scale optical neural net-
works based on photoelectric multiplication,” Physical Review X, vol. 9, no. 2, pp. 021–032, 2019.

[371] A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated
network for scalable photonic spike processing,” Journal of Lightwave Technology, vol. 32, no. 21,
pp. 4029–4041, 2014.

[372] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine
learning using diffractive deep neural networks,” Science, vol. 361, no. 6406, pp. 1004–1008, 2018.

[373] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund, “Digital Optical Neural
Networks for Large-Scale Machine Learning,” in Conference on Lasers and Electro-Optics(CLEO),
2020.

292

Author Biographies

Vivienne Sze received a B.A.Sc. (Hons) degree in Electrical Engineering from the University of Toronto,
Toronto, ON, Canada, in 2004, and S.M. and Ph.D. degrees in Electrical Engineering from the Massachusetts
Institute of Technology (MIT), Cambridge, MA, in 2006 and 2010, respectively. In 2011, she received the
Jin-Au Kong Outstanding Doctoral Thesis Prize in Electrical Engineering at MIT.

She is an Associate Professor at MIT in the Electrical Engineering and Computer Science Department. Her
research interests include energy-aware signal processing algorithms, and low-power circuit and system de-
sign for portable multimedia applications including computer vision, deep learning, autonomous navigation,
image processing, and video compression. Prior to joining MIT, she was a Member of Technical Staff in
the Systems and Applications R&D Center at Texas Instruments (TI), Dallas, TX, where she designed low-
power algorithms and architectures for video coding. She also represented TI in the JCT-VC committee
of ITU-T and ISO/IEC standards body during the development of High Efficiency Video Coding (HEVC),
which received a Primetime Engineering Emmy Award. Within the committee, she was the primary coor-
dinator of the core experiment on coefficient scanning and coding, and she chaired/vice-chaired several ad
hoc groups on entropy coding. She is a co-editor of High Efficiency Video Coding (HEVC): Algorithms and
Architectures (Springer, 2014).

Prof. Sze is a recipient of the inaugural ACM-W Rising Star Award, the 2019 Edgerton Faculty Achieve-
ment Award at MIT, the 2018 Facebook Faculty Award, the 2018 & 2017 Qualcomm Faculty Award, the
2018 & 2016 Google Faculty Research Award, the 2016 AFOSR Young Investigator Research Program
(YIP) Award, the 2016 3M Non-Tenured Faculty Award, the 2014 DARPA Young Faculty Award, the 2007
DAC/ISSCC Student Design Contest Award and a co-recipient of the 2018 VLSI Best Student Paper Award,
the 2017 CICC Outstanding Invited Paper Award, the 2016 IEEE Micro Top Picks Award, and the 2008
A-SSCC Outstanding Design Award. She currently serves on the technical program committee for the In-
ternational Solid-State Circuits Conference (ISSCC) and the SSCS Advisory Committee (AdCom). She
has served on the technical program committees for VLSI Circuits Symposium, Micro and the Conference
on Machine Learning and Systems (MLSys), as a guest editor for the IEEE Transactions on Circuits and
Systems for Video Technology (TCSVT), and as a Distinguished Lecturer for the IEEE Solid-State Circuits
Society (SSCS). Prof. Sze was Program Co-chair of the 2020 Conference on Machine Learning and Sys-
tems (MLSys) and teaches the MIT Professional Education course on Designing Efficient Deep Learning
Systems.

For more information about Prof. Sze’s research, please visit the Energy-Efficient Multimedia Systems
group at MIT: http://www.rle.mit.edu/eems/.

293

http://www.rle.mit.edu/eems/

AUTHOR BIOGRAPHIES Sze, Chen, Yang, Emer

Yu-Hsin Chen received a B. S. degree in Electrical Engineering from National Taiwan University, Taipei,
Taiwan, in 2009, and M. S. and Ph.D. degrees in Electrical Engineering and Computer Science (EECS) from
Massachusetts Institute of Technology (MIT), Cambridge, MA, in 2013 and 2018, respectively. He received
the 2018 Jin-Au Kong Outstanding Doctoral Thesis Prize in Electrical Engineering at MIT and the 2019
ACM SIGARCH/IEEE-CS TCCA Outstanding Dissertation Award. He is currently a Research Scientist at
Facebook focusing on hardware/software co-design to enable on-device AI for AR/VR systems. Previously,
he was a Research Scientist in Nvidia’s Architecture Research Group.

He was the recipient of the 2015 Nvidia Graduate Fellowship, 2015 ADI Outstanding Student Designer
Award, and 2017 IEEE SSCS Predoctoral Achievement Award. His work on the dataflows for CNN ac-
celerators was selected as one of the Top Picks in Computer Architecture in 2016. He also co-taught a
tutorial on “Hardware Architectures for Deep Neural Networks” at MICRO-49, ISCA2017, MICRO-50,
and ISCA2019.

Tien-Ju Yang received a B. S. degree in Electrical Engineering from National Taiwan University (NTU),
Taipei, Taiwan, in 2010, and an M. S. degree in Electronics Engineering from NTU in 2012. Between 2012
and 2015, he worked in the Intelligent Vision Processing Group, MediaTek Inc., Hsinchu, Taiwan, as an en-
gineer. He is currently a Ph.D. candidate in Electrical Engineering and Computer Science at Massachusetts
Institute of Technology, Cambridge, MA, working on energy-efficient deep neural network design. His re-
search interest spans the area of deep learning, computer vision, machine learning, image/video processing,
and VLSI system design. He won first place in the 2011 National Taiwan University Innovation Contest. He
also co-taught a tutorial on “Efficient Image Processing with Deep Neural Networks” at IEEE International
Conference on Image Processing 2019.

Joel S. Emer received B.S. (Hons.) and M.S. degrees in Electrical Engineering from Purdue University,
West Lafayette, IN, USA, in 1974 and 1975, respectively, and a Ph.D. degree in Electrical Engineering from
the University of Illinois at Urbana-Champaign, Champaign, IL, USA, in 1979.

He is currently a Senior Distinguished Research Scientist with Nvidia’s Architecture Research Group, West-
ford, MA, USA, where he is responsible for exploration of future architectures and modeling and analysis
methodologies. He is also a Professor of the Practice at the Massachusetts Institute of Technology, Cam-
bridge, MA, USA. Previously, he was with Intel, where he was an Intel Fellow and the Director of Mi-
croarchitecture Research. At Intel, he led the VSSAD Group, which he had previously been a member of at
Compaq and Digital Equipment Corporation. Over his career, he has held various research and advanced de-
velopment positions investigating processor micro-architecture and developing performance modeling and
evaluation techniques. He has made architectural contributions to a number of VAX, Alpha, and X86 proces-
sors and is recognized as one of the developers of the widely employed quantitative approach to processor
performance evaluation. He has been recognized for his contributions in the advancement of simultaneous
multithreading technology, processor reliability analysis, cache organization, pipelined processor organiza-
tion and spatial architectures for deep learning.

Dr. Emer is a Fellow of the ACM and IEEE and a member of the NAE. He has been a recipient of numerous
public recognitions. In 2009, he received the Eckert-Mauchly Award for lifetime contributions in computer
architecture. He received the Purdue University Outstanding Electrical and Computer Engineer Alumni
Award and the University of Illinois Electrical and Computer Engineering Distinguished Alumni Award in
2010 and 2011, respectively. His 1996 paper on simultaneous multithreading received the ACM/SIGARCH-

294

AUTHOR BIOGRAPHIES Sze, Chen, Yang, Emer

IEEE-CS/TCCA: Most Influential Paper Award in 2011. He was named to the ISCA and MICRO Halls of
Fame in 2005 and 2015, respectively. He has had six papers selected for the IEEE Micro’s Top Picks in
Computer Architecture in 2003, 2004, 2007, 2013, 2015, and 2016. He was the Program Chair of the
International Symposium on Computer Architecture (ISCA) in 2000 and the International Symposium on
Microarchitecture (MICRO) in 2017.

295

	Preface
	I Understanding Deep Neural Networks
	Introduction
	Background on Deep Neural Networks
	Artificial Intelligence and Deep Neural Networks
	Neural Networks and Deep Neural Networks

	Training versus Inference
	Development History
	Applications of DNNs
	Embedded versus Cloud

	Overview of Deep Neural Networks
	Attributes of Connections Within a Layer
	Attributes of Connections Between Layers
	Popular Types of Layers in DNNs
	CONV Layer (Convolutional)
	FC Layer (Fully Connected)
	Nonlinearity
	Pooling and Unpooling
	Normalization
	Compound Layers

	Convolutional Neural Networks (CNNs)
	Popular CNN Models

	Other DNNs
	DNN Development Resources
	Frameworks
	Models
	Popular Datasets for Classification
	Datasets for Other Tasks
	Summary

	II Design of Hardware for Processing DNNs
	Key Metrics and Design Objectives
	Accuracy
	Throughput and Latency
	Energy Efficiency and Power Consumption
	Hardware Cost
	Flexibility
	Scalability
	Interplay Between Different Metrics

	Kernel Computation
	Matrix Multiplication with Toeplitz
	Tiling for Optimizing Performance
	Computation Transform Optimizations
	Gauss' Complex Multiplication Transform
	Strassen's Matrix Multiplication Transform
	Winograd Transform
	Fast Fourier Transform
	Selecting a Transform

	Summary

	Designing DNN Accelerators
	Evaluation Metrics and Design Objectives
	Key Properties of DNN to Leverage
	DNN Hardware Design Considerations
	Architectural Techniques for Exploiting Data Reuse
	Temporal Reuse
	Spatial Reuse

	Techniques to Reduce Reuse Distance
	Dataflows and Loop Nests
	Dataflow Taxonomy
	Weight Stationary (WS)
	Output Stationary (OS)
	Input Stationary (IS)
	Row Stationary (RS)
	Other Dataflows
	Dataflows for Cross-Layer Processing

	DNN Accelerator Buffer Management Strategies
	Implicit versus Explicit Orchestration
	Coupled versus Decoupled Orchestration
	Explicit Decoupled Data Orchestration (EDDO)

	Flexible NoC Design for DNN Accelerators
	Flexible Hierarchical Mesh Network

	Summary

	Operation Mapping on Specialized Hardware
	Mapping and Loop Nests
	Mappers and Compilers
	Mapper Organization
	Map Spaces and Iteration Spaces
	Mapper Search
	Mapper Models and Configuration Generation

	Analysis Framework for Energy Efficiency
	Input Data Access Energy Cost
	Partial Sum Accumulation Energy Cost
	Obtaining the Reuse Parameters

	Eyexam: Framework for Evaluating Performance
	Simple 1-D Convolution Example
	Apply Performance Analysis Framework to 1-D Example

	Tools for Map Space Exploration

	III Co-Design of DNN Hardware and Algorithms
	Reducing Precision
	Benefits of Reduce Precision
	Determining the Bit Width
	Quantization
	Standard Components of the Bit Width

	Mixed Precision: Different Precision for Different Data Types
	Varying Precision: Change Precision for Different Parts of the DNN
	Binary Nets
	Interplay Between Precision and Other Design Choices
	Summary of Design Considerations for Reducing Precision

	Exploiting Sparsity
	Sources of Sparsity
	Activation Sparsity
	Weight Sparsity

	Compression
	Tensor Terminology
	Classification of Tensor Representations
	Representation of Payloads
	Representation Optimizations
	Tensor Representation Notation

	Sparse Dataflow
	Exploiting Sparse Weights
	Exploiting Sparse Activations
	Exploiting Sparse Weights and Activations
	Exploiting Sparsity in FC Layers
	Summary of Sparse Dataflows

	Summary

	Designing Efficient DNN Models
	Manual Network Design
	Improving Efficiency of CONV Layers
	Improving Efficiency of FC Layers
	Improving Efficiency of Network Architecture After Training

	Neural Architecture Search
	Shrinking the Search Space
	Improving the Optimization Algorithm
	Accelerating the Performance Evaluation
	Example of Neural Architecture Search

	Knowledge Distillation
	Design Considerations for Efficient DNN Models

	Advanced Technologies
	Processing Near Memory
	Embedded High-Density Memories
	Stacked Memory (3-D Memory)

	Processing in Memory
	Non-Volatile Memories (NVM)
	Static Random Access Memories (SRAM)
	Dynamic Random Access Memories (DRAM)
	Design Challenges

	Processing in Sensor
	Processing in the Optical Domain

	Conclusion
	Bibliography
	Author Biographies

