Efficient Processing of Deep Neural Networks: from Algorithms to Hardware Architectures

Vivienne Sze Massachusetts Institute of Technology

In collaboration with Tien-Ju Yang, Yu-Hsin Chen, Joel Emer

Slides available at <u>https://tinyurl.com/SzeNeurIPS2019</u>

Vivienne Sze (y@eems_mit)

Compute Demands for Deep Neural Networks

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Source: Open AI (<u>https://openai.com/blog/ai-and-compute/</u>)

Processing at the "Edge" instead of the "Cloud"

Deep Neural Networks for Self-Driving Cars

JACK STEWART TRANSPORTATION 02.06.18 08:00 AM

SELF-DRIVING CARS USE CRAZY AMOUNTS OF POWER, AND IT'S BECOMING A PROBLEM

Shelley, a self-driving Audi TT developed by Stanford University, uses the brains in the trunk to speed around a racetrack autonomously.

Cameras and radar generate ~ 6 gigabytes of data every 30 seconds.

Prototypes use around 2,500 Watts. Generates wasted heat and some prototypes need water-cooling!

Vivienne Sze (y@eems_mit)

Existing Processors Consume Too Much Power

< 1 Watt

> 10 Watts

Transistors Are Not Getting More Efficient

Goals of this Tutorial

Many approaches for efficient processing of DNNs. Too many to cover!
Machine Learning Arxiv Papers per Year
Number of DNN processor papers at

Vivienne Sze (🔰 @eems_mit)

NeurIPS 2019

Goals of this Tutorial

□ Many approaches for efficient processing of DNNs. **Too many to cover!**

By CADE METZ JAN, 14, 2018

Big Bets On A.I. Open a New Frontier for Chips Start-Ups, Too. (January 14, 2018)

"Today, at least 45 start-ups are working on chips that can power tasks like speech and self-driving cars, and at least five of them have raised more than \$100 million from investors. Venture capitalists invested more than \$1.5 billion in chip start-ups last year, nearly doubling the investments made two years ago, according to the research firm CB Insights."

Goals of this Tutorial

□ Many approaches for efficient processing of DNNs. **Too many to cover!**

- □ We will focus on how to **evaluate** approaches for efficient processing of DNNs
 - Approaches include the design of DNN hardware processors and DNN models
 - What are the key questions to ask?
- □ Specifically, we will discuss
 - What are the key metrics that should be measured and compared?
 - What are the **challenges** towards achieving these metrics?
 - What are the **design considerations** and tradeoffs?
- □ We will focus on inference, but many concepts covered also apply to training

Tutorial Overview

- Deep Neural Networks Overview (Terminology)
- □ Key Metrics and Design Objectives
- Design Considerations
 - CPU and GPU Platforms
 - Specialized / Domain-Specific Hardware (ASICs)
 - Break Q&A
 - Algorithm (DNN Model) and Hardware Co-Design
 - Other Platforms

□ Tools for Systematic Evaluation of DNN Processors

What are Deep Neural Networks?

Weighted Sums

Popular Types of Layers in DNNs

□ Fully Connected Layer

- Feed forward, fully connected
- Multilayer Perceptron (MLP)

Convolutional Layer

- Feed forward, sparsely-connected w/ weight sharing
- Convolutional Neural Network (CNN)
- Typically used for images

Recurrent Layer

- Feedback
- Recurrent Neural Network (RNN)
- Typically used for sequential data (e.g., speech, language)

□ Attention Layer/Mechanism

- Attention (matrix multiply) + feed forward, fully connected
- Transformer [**Vaswani**, *NeurIPS* 2017]

a plane of input activations a.k.a. **input feature map (fmap)**

Many Input Channels (C)

Vivienne Sze (y@eems_mit)

NeurIPS 2019

Define Shape for Each Layer

Output fmaps

Shape **varies** across layers

- **H** Height of input fmap (activations)
- **W** Width of input fmap (activations)
- **C** Number of 2-D input fmaps /filters (channels)
- **R** Height of 2-D filter (weights)
- **S** Width of 2-D filter (weights)
- **M** Number of 2-D output fmaps (channels)
- **E** Height of output fmap (activations)
- **F** Width of output fmap (activations)

N – Number of input fmaps/output fmaps (batch size)

Layers with Varying Shapes

MobileNetV3-Large Convolutional Layer Configurations

Block	Filter Size (RxS)	# Filters (M)	# Channels (C)			
1	3x3	16	3			
3	1x1	64	16			
3	3x3	64	1			
3	1x1	24	64			
6	1x1	120	40			
6	5x5	120	1			
6	1x1	40	120			

[**Howard**, *ICCV* 2019]

Popular DNN Models

Metrics	LeNet-5	AlexNet	VGG-16	GoogLeNet (v1)	ResNet-50	EfficientNet-B4
Top-5 error (ImageNet)	n/a	16.4	7.4	6.7	5.3	3.7*
Input Size	28x28	227x227	224x224	224x224	224x224	380x380
# of CONV Layers	2	5	16	21 (depth)	49	96
# of Weights	2.6k	2.3M	14.7M	6.0M	23.5M	14M
# of MACs	283k	666M	15.3G	1.43G	3.86G	4.4G
# of FC layers	2	3	3	1	1	65**
# of Weights	58k	58.6M	124M	1M	2M	4.9M
# of MACs	58k	58.6M	124M	1M	2M	4.9M
Total Weights	60k	61M	138M	7M	25.5M	19M
Total MACs	341k	724M	15.5G	1.43G	3.9G	4.4G
Reference	Lecun , <i>PIEEE</i> 1998	Krizhevsky, NeurIPS 2012	Simonyan , ICLR 2015	Szegedy, CVPR 2015	He , <i>CVPR</i> 2016	Tan , <i>ICML</i> 2019

DNN models getting larger and deeper

* Does not include multi-crop and ensemble

** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)

Key Metrics and Design Objectives

Key Metrics: Much more than OPS/W!

- □ Accuracy
 - Quality of result
- Throughput
 - Analytics on high volume data
 - Real-time performance (e.g., video at 30 fps)

□ Latency

For interactive applications (e.g., autonomous navigation)

Energy and Power

- Embedded devices have limited battery capacity
- Data centers have a power ceiling due to cooling cost
- Hardware Cost
 - \$\$\$
- Flexibility
 - Range of DNN models and tasks
- □ Scalability
 - Scaling of performance with amount of resources

MNIST	CIFAR-10	ImageNet	
9681796691 86757863485 2179712355 4819018894 4618641560 752222374857 20222374857 20222374857 202384857 2028073263 207289686 77289686			

Embedded Device

Data Center

Speech Recognition

[**Sze**, *CICC* 2017]

Key Design Objectives of DNN Processor

□ Increase Throughput and Reduce Latency

- Reduce time per MAC
 - \Box Reduce critical path \rightarrow increase clock frequency
 - □ Reduce instruction overhead
- Avoid unnecessary MACs (save cycles)
- Increase number of processing elements (PE) \rightarrow more MACs in parallel
 - □ Increase area density of PE or area cost of system
- Increase PE utilization* \rightarrow keep PEs busy
 - □ Distribute workload to as many PEs as possible
 - □ Balance the workload across PEs
 - □ Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)
- □ Low latency has an additional constraint of **small batch size**

*(100% = peak performance)

[Chen, arXiv 2019: <u>https://arxiv.org/abs/1807.07928</u>]

Vivienne Sze (V@eems_mit)

https://arxiv.org/abs/1807.07928

Key Design Objectives of DNN Processor

Reduce Energy and Power Consumption

- Reduce data movement as it dominates energy consumption
 - □ Exploit data reuse
- Reduce energy per MAC
 - Reduce switching activity and/or capacitance
 - □ Reduce instruction overhead
- Avoid unnecessary MACs
- Power consumption is limited by heat dissipation, which limits the maximum # of MACs in parallel (i.e., throughput)

Operation:	Energy (pJ)	Relative Energy Cost
8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	
8b Multiply	0.2	
32b Multiply	3.1	
16b FP Multiply	1.1	
32b FP Multiply	3.7	
32b SRAM Read (8KB)	5	
32b DRAM Read	640	
[Horowitz, ISSCC 2014]		1 10 10 ² 10 ³ 10 ⁴

Key Design Objectives of DNN Processor

Flexibility

- Reduce overhead of supporting flexibility
- Maintain efficiency across wide range of DNN models
 - □ Different layer shapes impact the amount of
 - Required storage and compute
 - Available data reuse that can be exploited
 - □ Different precision across layers & data types (weight, activation, partial sum)
 - Different degrees of sparsity (number of zeros in weights or activations)
 - □ Types of DNN layers and computation beyond MACs (e.g., activation functions)

Scalability

Increase how performance (i.e., throughput, latency, energy, power) scales with increase in amount of resources (e.g., number of PEs, amount of memory, etc.)

Specifications to Evaluate Metrics

- Difficulty of dataset and/or task should be considered
- Difficult tasks typically require more complex DNN models

Throughput

- Number of PEs with utilization (not just peak performance)
- Runtime for running specific DNN models

Latency

Batch size used in evaluation

Energy and Power

- Power consumption for running specific DNN models
- Off-chip memory access (e.g., DRAM)
- Hardware Cost п
 - On-chip storage, # of PEs, chip area + process technology
- Flexibility
 - Report performance across a wide range of DNN models
 - Define range of DNN models that are efficiently supported

Comprehensive Coverage for Evaluation

- All metrics should be reported for fair evaluation of design tradeoffs
- □ Examples of what can happen if a certain metric is omitted:
 - Without the accuracy given for a specific dataset and task, one could run a simple DNN and claim low power, high throughput, and low cost – however, the processor might not be usable for a meaningful task
 - Without reporting the off-chip memory access, one could build a processor with only MACs and claim low cost, high throughput, high accuracy, and low chip power – however, when evaluating system power, the off-chip memory access would be substantial

□ Are results measured or simulated? On what test data?

The evaluation process for whether a DNN processor is a viable solution for a given application might go as follows:

- **1. Accuracy** determines if it can perform the given task
- 2. Latency and throughput determine if it can run fast enough and in real-time
- **3. Energy and power consumption** will primarily dictate the form factor of the device where the processing can operate
- **4. Cost**, which is primarily dictated by the chip area, determines how much one would pay for this solution
- 5. Flexibility determines the range of tasks it can support

CPU & GPU Platforms
CPUs and GPUs Targeting DNNs

Intel Xeon (Cascade Lake) Nvidia Tesla (Volta) AMD Radeon (Instinct)

Use matrix multiplication libraries on CPUs and GPUs

Map DNN to a Matrix Multiplication

Fully connected layer can be directly represented as matrix multiplication

In fully connected layer, filter size (R, S) same as input size (H, W)

by recurrent and attention layers

Map DNN to a Matrix Multiplication

Convolutional layer can be converted to Toeplitz Matrix

Convolution

Matrix Multiply (by Toeplitz Matrix) Data is repeated

CPU, GPU Libraries for Matrix Multiplication

□ Implementation: Matrix Multiplication (GEMM)

CPU: OpenBLAS, Intel MKL, etc

■ GPU: cuBLAS, cuDNN, etc

- Library will note shape of the matrix multiply and select implementation optimized for that shape
- Optimization usually involves proper tiling to memory hierarchy

Tiling Matrix Multiplication

Matrix multiplication **tiled** to fit in cache (i.e., on-chip memory) and computation ordered to maximize reuse of data in cache

Analogy: Gauss's Multiplication Algorithm

$$(a+bi)(c+di)=(ac-bd)+(bc+ad)i.$$

4 multiplications + 3 additions

$$k_{1} = c \cdot (a + b)$$

$$k_{2} = a \cdot (d - c)$$

$$k_{3} = b \cdot (c + d)$$
Real part = $k_{1} - k_{3}$
Real maginary part = $k_{1} + k_{2}$.

3 multiplications + 5 additions

Reduce number of multiplications to **increase** throughput

Reduce Operations in Matrix Multiplication

Fast Fourier Transform [Mathieu, ICLR 2014]

- Pro: Direct convolution $O(N_o^2 N_f^2)$ to $O(N_o^2 \log_2 N_o)$
- Con: Increase storage requirements
- **Strassen** [Cong, ICANN 2014]
 - Pro: O(N³) to (N^{2.807})
 - Con: Numerical stability
- □ Winograd [Lavin, CVPR 2016]
 - Pro: 2.25x speed up for 3x3 filter
 - Con: Specialized processing depending on filter size

Compiler selects transform based on filter size

Reduce Instruction Overhead

Perform more MACs per instruction

- **CPU:** SIMD / Vector Instructions
 - e.g., Specialized Vector Neural Network Instructions (VNNI) fuse separate multiply and add instructions into single MAC instruction and avoid storing intermediate values in memory
- **GPU:** SIMT / Tensor Instructions
 - e.g., New opcode Matrix Multiply Accumulate (HMMA) performs 64 MACs with Tensor Core
- Perform more MACs per cycle without increasing memory bandwidth by adding support for reduced precision
 - e.g., If access 512 bits per cycle, can perform **64** 8-bit MACs vs. **16** 32-bit MACs

Design Considerations for CPU and GPU

□ Software (compiler)

- **Reduce unnecessary MACs**: Apply transforms
- Increase PE utilization: Schedule loop order and tile data to increase data reuse in memory hierarchy

□ Hardware

Reduce time per MAC

- □ Increase speed of PEs
- □ Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core)
 → requires additional hardware

Increase number of parallel MACs

- □ Increase number of PEs on chip \rightarrow area cost
- Support reduced precision in PEs

Increase PE utilization

- □ Increase on-chip storage \rightarrow area cost
- $\Box \quad \text{External memory BW} \rightarrow \text{system cost}$

Specialized / Domain-Specific Hardware

Properties We Can Leverage

Operations exhibit high parallelism → high throughput possible

Memory Access is the Bottleneck

Worst Case: all memory R/W are DRAM accesses

Example: AlexNet has **724M** MACs → **2896M** DRAM accesses required

Properties We Can Leverage

Operations exhibit high parallelism → high throughput possible

□ Input data reuse opportunities (e.g., up to 500x for AlexNet)
→ exploit low-cost memory

Convolutional Reuse

(Activations, Weights) CONV layers only (sliding window)

Filter Reuse (Weights) CONV and FC layers 48 (batch size > 1)

Highly-Parallel Compute Paradigms

Temporal Architecture (SIMD/SIMT)

Spatial Architecture (Dataflow Processing)

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Advantages of Spatial Architecture

Efficient Data Reuse Distributed local storage (RF)

How to Map the Dataflow?

Spatial Architecture (Dataflow Processing)

Vivienne Sze (**y**@eems_mit)

Efficient Dataflows

Y.-H. Chen, J. Emer, V. Sze, "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks,"

International Symposium on Computer Architecture (ISCA), June 2016.

Vivienne Sze (y@eems_mit)

Data Movement is Expensive

* measured from a commercial 65nm process

Weight Stationary (WS)

- Minimize weight read energy consumption
 - maximize convolutional and filter reuse of weights
- Broadcast activations and accumulate partial sums spatially across the PE array
- Examples: TPU [Jouppi, ISCA 2017], NVDLA

Vivienne Sze (💓 @eems_mit)

Output Stationary (OS)

- **Minimize partial sum** R/W energy consumption
 - maximize local accumulation
- Broadcast/Multicast filter weights and reuse activations spatially across the PE array
- Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

Vivienne Sze (💓 @eems_mit)

Input Stationary (IS)

- Minimize activation read energy consumption
 - maximize convolutional and fmap reuse of activations
- Unicast weights and accumulate partial sums spatially across the PE array
- Example: [**SCNN**, *ISCA* 2017]

Row Stationary Dataflow

- Maximize row convolutional reuse in RF
 - Keep a **filter** row and **fmap** sliding window in RF
- Maximize row psum accumulation in RF

Row Stationary Dataflow

[**Chen**, *ISCA* 2016]

Eyeriss: Deep Neural Network Accelerator

Exploits data reuse for **100x** reduction in memory accesses from global buffer and **1400x** reduction in memory accesses from off-chip DRAM

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Vivienne Sze (💆 @eems_mit)

Features: Energy vs. Accuracy

Break for Q&A

Algorithm (DNN Model) & Hardware Co-Design

Algorithm & Hardware Co-Design

 \Box Co-design algorithm + hardware \rightarrow better than what each could achieve alone

- □ Co-design approaches can be loosely grouped into two categories:
 - Reduce *size* of operands for storage/compute (**Reduced Precision**)
 - Reduce *number* of operations for storage/compute (Sparsity and Efficient Network Architecture)
- □ Hardware support required to increase savings in latency and energy
 - Ensure that overhead of hardware support does not exceed benefits
- □ Unlike previously discussed approaches, these approaches can **affect accuracy**!
 - Evaluate tradeoff between accuracy and other metrics

Reduced Precision

Why Reduce Precision (i.e., Reduce Bit Width)?

- **Reduce data movement** and storage cost for inputs and outputs of MAC
 - Smaller memory \rightarrow lower energy

□ Reduce cost of MAC

Cost of multiply increases with bit width (n) \rightarrow energy and area by O(n²); delay by O(n)

Note: Bit width for multiplication and accumulation in a MAC are different

Vivienne Sze (y@eems_mit)

NeurIPS 2019

Impact of Reduced Precision on Energy & Area

Operation:	Energy (pJ)	Relative Energy Cost	Area (μm²)	Relative Area Cost
8b Add	0.03		36	
16b Add	0.05		67	
32b Add	0.1		137	
16b FP Add	0.4		1360	
32b FP Add	0.9		4184	
8b Mult	0.2		282	
32b Mult	3.1		3495	
16b FP Mult	1.1		1640	
32b FP Mult	3.7		7700	
32b SRAM Read (8KB)	5		N/A	
32b DRAM Read	640		N/A	[Horowitz, ISSCC 2014
		1 10 10 ² 10 ³ 10 ⁴		1 10 10 ² 10 ³

- Number of unique values
 - e.g., **M-bits** to represent 2^M values
- Dynamic range of values
 - e.g., **E-bits** to scale values by 2^(E-127)
- □ Signed or unsigned values
 - e.g., signed requires one extra bit (S)
- **Total bits = S+E+M**
- Floating point (FP) allows range to change for each value (E-bits)
- □ **Fixed point (Int)** has fixed range
- Default CPU/GPU is 32-bit float (FP32)

Common Numerical Representations

- For accuracy, require sufficient precision to represent different data types
 - **For inference:** weights, activations, and partial sums
 - For training: weights, activations, partial sums, gradients, and weight update
 - Required precision can vary across data types
 Referred to as **mixed precision**

Reduce number of unique values (M-bits, a.k.a. mantissa)

- Default: Uniform quantization (values are equally spaced out)
- Non-uniform quantization (spacing can be computed, e.g., logarithmic, or with look-up-table)
- Fewer unique values can make transforms and compression more effective

Reduce number of unique values (M-bits, a.k.a. mantissa)

- Default: Uniform quantization (values are equally spaced out)
- Non-uniform quantization (spacing can be computed, e.g., logarithmic, or with look-up-table)
- Fewer unique values can make transforms and compression more effective

Reduce dynamic range (E-bits, a.k.a., exponent)

- If possible, fix range (i.e., used fixed point, E=0)
- Share range across group of values (e.g., weights for a layer or channel)
- □ Tradeoff between number of bits allocated to **M-bits** and **E-bits**

fp16 (S=1, E=5, M=10) **SEEEEEMMMMMMMMM** range:
$$\sim 5.9e^{-8}$$
 to $\sim 6.5e^{4}$
ofloat16 (S=1, E=8, M=7) **SEEEEEEEEMMMMMMM** range: $\sim 1e^{-38}$ to $\sim 3e^{38}$

Commercial Products Support Reduced Precision

Nvidia's Pascal (2016)

Google's TPU (2016) TPU v2 & v3 (2019)

Intel's NNP-L (2019)

8-bit fixed for Inference & 16-bit float for Training

Reduced Precision in Research

Reduce number of bits

- Binary Nets [Courbariaux, NeurIPS 2015]
- Reduce number of unique weights and/or activations
 - Ternary Weight Nets [Li, NeurIPS Workshop 2016]
 - XNOR-Net [Rategari, ECCV 2016]
- Non-Linear Quantization
 - LogNet [Lee, ICASSP 2017]
- Training
 - 8-bit with stochastic rounding [Wang, NeurIPS 2018]

3000

2500

2000 1500

1000

500

0

-0.2

-0.1

0

Weight Values

0.1

0.2

Binary Filters

0.2

0

Weight Values

⁷²
Precision Scalable MACs for Varying Precision

Conventional data-gated MAC Gate unused logic (e.g., full adders) to reduce energy consumption

[Camus, JETCAS 2019]

Many approaches add logic to increase utilization for higher throughput/area; however, **overhead can reduce benefits**

Design Considerations for Reduced Precision

□ Impact on accuracy

- Must consider difficulty of dataset, task, and DNN model
 - e.g., Easy to reduce precision for an easy task (e.g., digit classification); does method work for a more difficult task?

Does hardware cost exceed benefits?

- Need extra hardware to support variable precision
 - □ e.g., Additional shift-and-add logic and registers for variable precision
- Granularity impacts hardware overhead as well as accuracy
 - □ e.g., More overhead to support (1b, 2b, 3b ... 16b) than (2b, 4b, 8b, 16b)

Evaluation

- Use 8-bit for inference and 16-bit float for training for baseline
- 32-bit float is a weak baseline

Sparsity

Why Increase Sparsity?

Reduce number of MACs

- Anything multiplied by zero is zero \rightarrow avoid performing unnecessary MACs
- Reduce energy consumption and latency

Reduce data movement

- If one of the inputs to MAC is zero, can avoid reading the other input
- Compress data by only sending non-zero values
- CPU/GPU libraries typically only support really high sparsity (> 99%) due to the overhead
 - Sparsity for DNNs typically much lower \rightarrow need specialized hardware

Sparsity in Activation Data

Data Gating / Zero Skipping

Gate operations

(reduce power consumption)

Skip operations

(increase throughput)

Eyeriss [Chen, ISSCC 2016]

Cnvlutin [Albericio, ISCA 2016]

Apply Compression to Reduce Data Movement

Example: Eyeriss compresses activations to reduce DRAM BW

Simple RLC within 5% - 10% of theoretical entropy limit

[Chen, ISSCC 2016]

Pruning – Make Weights Sparse

Optimal Brain Damage

Prune DNN based on *magnitude* of weights

Example: AlexNet *Weight Reduction:* CONV layers 2.7x, *FC layers 9.9x Overall Reduction:* Weights 9x, MACs 3x [Han, NeurIPS 2015]

Vivienne Sze (🔰 @eems_mit)

Unstructured or Structured Sparsity

Image Source: [Mao, CVPR Workshop 2017]

Benefits:

Increase coarseness \rightarrow more structure in sparsity (easier for hardware) Less signaling overhead for location of zeros \rightarrow better compression

Design Considerations for Sparsity

Impact on accuracy

- Must consider difficulty of dataset, task, and DNN model
 - e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights; does method work on efficient DNN models?

Does hardware cost exceed benefits?

- Need extra hardware to identify sparsity
 - □ e.g., Additional logic to identify non-zeros and store non-zero locations
- Accounting for sparsity in both weights and activations is challenging
 - □ Need to compute *intersection* of two data streams rather than find next non-zero in one
- Granularity impacts hardware overhead as well as accuracy
 - □ e.g., Fine-grained or coarse-grained (structured) sparsity
- Compressed data will be variable length
 - □ Reduced flexibility in access order \rightarrow random access will have significant overhead

Efficient Network Architectures

Efficient DNN Models

- Design efficient DNN Models
 - Tends to increase variation of layer shapes (e.g., R, S, C) that need to be supported
 - Can be handcrafted or learned using Network/Neural Architecture Search (NAS)

Reduce number of channels before large filter convolution

	Year	Accuracy*	# Layers	# Weights	# MACs
AlexNet	2012	80.4%	8	61M	724M
MobileNet	2017	89.5%	28	4M	569M
* ImageNet Classification Top-					

Filter Decomposition

1x1 convolutions

Vivienne Sze (y@eems mit)

Decompose

Manual Network Design

Reduce Spatial Size (R, S)

stacked filters

Reduce Channels (C)

1x1 convolution, group of filters

Reduce Filters (M)

feature map reuse across layers

Layer Pooling

global pooling before FC layer

Input fmaps

Output fmaps

Vivienne Sze (y@eems_mit)

Reduce Spatial Size (R, S): Stacked Filter

Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Reduce Channels (C): 1x1 Convolution

Use **1x1 filter** to summarize cross-channel information

Reduce Channels (C): 1x1 Convolution

Use **1x1 filter** to summarize cross-channel information

GoogLeNet:1x1 Convolution

Apply 1x1 convolution before 'large' convolution filters. Reduce weights such that **entire CNN can be trained on one GPU.** Number of multiplications reduced from 854M \rightarrow 358M

Reduce Channels (C): Group of Filters

input fmap C/2 filter₁ output fmap₁ н \bigotimes \oplus R Split filters and channels of feature map into different groups S W e.g., For two groups, each filter input fmap C/2 filter₂ requires 2x fewer weights and output fmap₂ multiplications \otimes R \oplus Ε W

Reduce Channels (C): Group of Filters

The extreme case is depthwise convolution –

each group contains only one channel

Reduce Channels (C): Group of Filters

Two ways of mixing information across groups

Pointwise (1x1) Convolution (Mix in one step) MobileNet [**Howard**, *arXiv* 2017]

Shuffle Operation (Mix in multiple steps) ShuffleNet [**Zhang**, *CVPR* 2018]

Vivienne Sze (**y**@eems_mit)

Reduce Filters (M): Feature Map Reuse

Layer Pooling: Simplify FC Layers

[Krizhevsky, NeurIPS 2012]

First FC layer accounts for a significant portion of weights

38M of 61M for AlexNet

Layer Pooling: Simplify FC Layers

Network/Neural Architecture Search (NAS)

Rather than handcrafting the architecture, automatically search for it

Network/Neural Architecture Search (NAS)

Three main components:

- Search Space (what is the set of all samples)
- Optimization Algorithm (where to sample)
- Performance Evaluation (how to evaluate samples)

Key Metrics: Achievable DNN accuracy and required search time

(1) Shrink the Search Space

- Trade the breadth of architectures for search speed
- May limit the performance that can be achieved
- Use domain knowledge from manual network design to help guide the reduction of the search space

(1) Shrink the Search Space

□ Search space = **layer operations** + connections between layers

Common layer operations

- Identity
- 1x3 then 3x1 convolution
- 1x7 then 7x1 convolution
- 3x3 dilated convolution
- 1x1 convolution
- 3x3 convolution

- 3x3 separable convolution
- 5x5 separable convolution
- 3x3 average pooling
- 3x3 max pooling
- 5x5 max pooling
- 7x7 max pooling

[**Zoph**, *CVPR* 2018]

(1) Shrink the Search Space

Search space = layer operations + connections between layers

Smaller Search Space

(2) Improve Optimization Algorithm

Random

Coordinate Descent

Gradient Descent

Evolutionary

(3) Simplify the Performance Evaluation

NAS needs only the **rank** of the performance values
Method 1: approximate accuracy

(3) Simplify the Performance Evaluation

NAS needs only the **rank** of the performance values
Method 2: approximate weights

(3) Simplify the Performance Evaluation

NAS needs only the **rank** of the performance values
Method 3: approximate metrics (e.g., latency, energy)

Design Considerations for NAS

□ The components may not be chosen individually

- Some optimization algorithms limit the search space
- Type of performance metric may limit the selection of the optimization algorithms

Commonly overlooked properties

- The complexity of implementation
- The ease of tuning hyperparameters of the optimization
- The probability of convergence to a good architecture

Hardware In the Loop
How to Evaluate Complexity of DNN Model?

Number of MACs and weights are not good proxies for latency and energy

Directly target energy and incorporate it into the optimization of DNNs to provide greater energy savings

- Sort layers based on energy and prune layers that consume the most energy first
- Energy-aware pruning reduces AlexNet energy by 3.7x and outperforms the previous work that uses magnitudebased pruning by 1.7x

[**Yang**, *CVPR* 2017]

Pruned models available at http://eyeriss.mit.edu/energy.html

NetAdapt: Platform-Aware DNN Adaptation

- Automatically adapt DNN to a mobile platform to reach a target latency or energy budget
- Use empirical measurements to guide optimization (avoid modeling of tool chain or platform architecture)
- Requires very few hyperparameters to tune

Code available at http://netadapt.mit.edu

[Yang, ECCV 2018]

In collaboration with Google's Mobile Vision Team

Improved Latency vs. Accuracy Tradeoff

NetAdapt boosts the measured inference speed of MobileNet by up to 1.7x with higher accuracy

Reference:

MobileNet: Howard et al, "Mobilenets: Efficient convolutional neural networks for mobile vision applications," arXiv 2017 **MorphNet:** Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of deep networks," CVPR 2018

Design Considerations for Co-Design

Impact on accuracy

- Consider quality of baseline (initial) DNN model, difficulty of task and dataset
- Sweep curve of accuracy versus latency/energy to see the full tradeoff

Does hardware cost exceed benefits?

- Need extra hardware to support variable precision and shapes or to identify sparsity
- Granularity impacts hardware overhead as well as accuracy

Evaluation

Avoid only evaluating impact based on number of weights or MACs as they may not be sufficient for evaluating energy consumption and latency

Design Considerations for Co-Design

□ Time required to perform co-design

- e.g., Difficulty of tuning affected by
 - □ Number of hyperparameters
 - □ Uncertainty in relationship between hyperparameters and impact on performance

□ Other aspects that affect accuracy, latency or energy

- Type of data augmentation and preprocessing
- Optimization algorithm, hyperparameters, learning rate schedule, batch size
- Training and finetuning time
- Deep learning libraries and quality of the code

How does the approach perform on different platforms?

Is the approach a general method, or applicable on specific hardware?

Training Approaches for Co-Design

2. Use pretrained large DNN model

1. Train from scratch

- a) Initialize weights for an efficient DNN model
- **b) Knowledge distillation** to an efficient DNN model
 - □ Need to keep pretrained model
- No guarantees which approach is better (open area of research)

[Bucilu, *KDD* 2006],[Hinton, arXiv 2015]

Flexibility & Scalability

Many Efficient DNN Design Approaches

[**Chen**, *SysML* 2018]

Limitations of Existing DNN Processors

- Specialized DNN processors often rely on certain properties of the DNN model in order to achieve high energy-efficiency
- □ Example: Reduce memory access by amortizing across PE array

Limitations of Existing DNN Processors

□ Reuse depends on *#* of channels, feature map/batch size

Not efficient across all DNN models (e.g., efficient network architectures)

Need Flexible Dataflow

Use flexible dataflow (Row Stationary) to exploit reuse in any dimension of DNN to increase energy efficiency and array utilization

Example: Depth-wise layer

Need Flexible On-Chip Network for Varying Reuse

- When reuse available, need multicast to exploit spatial data reuse for energy efficiency and high array utilization
- When reuse not available, need unicast for high BW for weights for FC and weights & activations for high PE utilization
- □ An all-to-all on-chip network satisfies above but too expensive and not scalable

Hierarchical Mesh

Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports

- □ Wide range of filter shapes
 - Large and Compact
- Different Layers
 - CONV, FC, depth wise, etc.
- □ Wide range of sparsity
 - Dense and Sparse
- □ Scalable architecture

Over an order of magnitude faster and more energy efficient than Eyeriss v1

Speed up over Eyeriss v1 scales with number of PEs

# of PEs	256	1024	16384
AlexNet	17.9x	71.5x	1086.7x
GoogLeNet	10.4x	37.8x	448.8x
MobileNet	15.7x	57.9x	873.0x

[Chen, JETCAS 2019]

Design Considerations for Flexibility and Scalability

- Many of the existing DNN processors rely on certain properties of the DNN model
 - Properties cannot be guaranteed as the wide range techniques used for efficient DNN model design has resulted in a more diverse set of DNNs
 - DNN processors should be sufficiently flexible to efficiently support a wide range of techniques
- Evaluate DNN processors on a comprehensive set of benchmarks
 - MLPerf benchmark is a start, but may need more (e.g., reduced precision, sparsity, efficient network architectures)
- Evaluate improvement in performance as resources scales up!
 Multiple chips modules [Zimmer, VLSI 2019] and Wafer Scale [Lie, HotChips 2019]

Design Considerations for ASIC

Increase PE utilization

■ Flexible mapping and on-chip network for different DNN models → requires additional hardware

□ Reduce data movement

- Custom memory hierarchy and dataflows that exploit data reuse
- Apply compression to exploit redundancy in data → requires additional hardware

□ Reduce time and energy per MAC

■ Reduce precision → if precision varies, requires additional hardware; impact on accuracy

□ Reduce unnecessary MACs

- Exploit sparsity \rightarrow requires additional hardware; impact on accuracy
- Exploit redundant operations \rightarrow requires additional hardware

Other Platforms

Processing In Memory / In Memory Compute

Reduce data movement by moving compute into memory

Analog compute

Increased sensitivity to circuit nonidealities: non-linearities, process, voltage, and temperature variations

eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

More details in tutorial @ ISSCC 2020

Activation is input voltage (V_i) Weight is resistor conductance (G_i)

Image Source: [Shafiee, ISCA 2016]

Field Programmable Gate Array (FPGA)

- □ Often implemented as **matrix-vector multiply**
 - e.g., Microsoft Brainwave NPU [Fowers, ISCA 2018]
- A popular approach uses weight stationary dataflow and stores all weights on FPGA for low latency (batch size of 1)
- Reduced precision to fit more weights and MACs on FPGA

More details in tutorial @ ISSCC 2020

FPGA Performance vs. Data Type

DNN Processor Evaluation Tools

- Require systematic way to
 - Evaluate and compare wide range of DNN processor designs
 - Rapidly explore design space
- □ Accelergy [Wu, ICCAD 2019]
 - Early stage energy estimation tool at the architecture level
 - Estimate energy consumption based on architecture level components (e.g., # of PEs, memory size, on-chip network)
 - Evaluate architecture level energy impact of emerging devices
 - Plug-ins for different technologies
- **Timeloop** [Parashar, ISPASS 2019]
 - DNN mapping tool
 - Performance Simulator \rightarrow Action counts

Open-source code available at: <u>http://accelergy.mit.edu</u>

DNN Compilers for Diverse DNN Platforms

Compilers generate optimized code for various DNN platforms (backends) from high-level frameworks

https://tvm.apache.org/

https://github.com/pytorch/glow

Summary

- DNNs are a critical component in the AI revolution, delivering record breaking accuracy on many important AI tasks for a wide range of applications; however, it comes at the cost of high computational complexity
- Efficient processing of DNNs is an important area of research with many promising **opportunities for innovation at various levels** of hardware design, including algorithm co-design
- When considering different DNN solutions it is important to evaluate with the appropriate workload in term of both input and model, and recognize that they are evolving rapidly
- It is important to consider a comprehensive set of metrics when evaluating different DNN solutions: accuracy, throughput, latency, power, energy, flexibility, scalability and cost

Additional Resources

V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, "*Efficient Processing of Deep Neural Networks: A Tutorial and Survey*," Proceedings of the IEEE, Dec. 2017

Book Coming Soon!

MIT Professional Education Course on **"Designing Efficient Deep Learning Systems"** <u>http://professional-education.mit.edu/deeplearning</u>

DNN tutorial website http://eyeriss.mit.edu/tutorial.html

More info about our research on efficient computing for DNNs, robotics, and health care <u>http://sze.mit.edu</u>

Efficient Processing of Deep Neural Networks: A Tutorial and Survey System Scaling With Nanostructured Power and RF Components Nonorthogonal Multiple Access for 5G and Beyond

Point of View: Beyond Smart Grid—A Cyber–Physical–Social System in Energy Future Scanning Our Past: Materials Science, Instrument Knowledge, and the Power Source Renaissance

For updates

EEMS Mailing List

Follow @eems_mit

References (1 of 4)

Deep Learning Overview

- □ Transformer: Vaswani et al, "Attention is all you need," NeurIPS 2017
- LeNet: LeCun, Yann, et al. "Gradient-based learning applied to document recognition," Proc. IEEE 1998
- AlexNet: Krizhevsky et al. "Imagenet classification with deep convolutional neural networks," NeurIPS 2012
- □ VGGNet: Simonyan et al.. "Very deep convolutional networks for large-scale image recognition," ICLR 2015
- □ GoogleNet: Szegedy et al. "Going deeper with convolutions," CVPR 2015
- □ ResNet: He et al. "Deep residual learning for image recognition," CVPR 2016
- EfficientNet: Tan et al., "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks," ICML 2019

Key Metrics and Design Objectives

- □ Sze et al., "Hardware for machine learning: Challenges and opportunities," CICC 2017, <u>https://www.youtube.com/watch?v=8Qa0E1jdkrE&feature=youtu.be</u>
- □ Sze et al., "Efficient processing of deep neural networks: A tutorial and survey," Proc. IEEE 2017
- Williams et al., "Roofline: An insightful visual performance model for floating-point programs and multicore architectures," CACM 2009
- □ Chen et al., Eyexam, <u>https://arxiv.org/abs/1807.07928</u>

CPU and GPU Platforms

- □ Mathieu et al., "Fast training of convolutional networks through FFTs," ICLR 2014
- Cong et al., "Minimizing computation in convolutional neural networks," ICANN 2014
- Lavin et al., "Fast algorithms for convolutional neural networks," CVPR 2016

References (2 of 4)

Specialized / Domain-Specific Hardware (ASICs): Efficient Dataflows

- □ Chen et al., "Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks," ISCA 2016
- Jouppi et al., "In-datacenter performance analysis of a tensor processing unit," ISCA 2017
- □ NVDLA, <u>http://nvdla.org</u>
- □ Moons et al., "A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets," VLSI 2017
- Parashar et al, "Scnn: An accelerator for compressed-sparse convolutional neural networks," ISCA 2017
- Chen et al., "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," ISSCC 2016, <u>http://eyeriss.mit.edu</u>
- Suleiman et al., "Towards Closing the Energy Gap Between HOG and CNN Features for Embedded Vision," ISCAS 2017
- □ Suleiman et al., "A 58.6mW Real-time Programmable Object Detection with Multi-Scale Multi-Object Support Using Deformable Parts Models on 1920×1080 Video at 30fps," VLSI 2016

Co-Design: Reduced Precision

- Courbariaux et al., "Binaryconnect: Training deep neural networks with binary weights during propagations," NeurIPS 2015
- □ Li et al., "Ternary weight networks," NeurIPS Workshop 2016
- Rategari et al., "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks," ECCV 2016
- Lee et al., "LogNet: Energy-efficient neural networks using logarithmic computation," ICASSP 2017
- □ Camus et al., "Review and Benchmarking of Precision-Scalable Multiply-Accumulate Unit Architectures for Embedded Neural-Network Processing," JETCAS 2019

References (3 of 4)

Co-Design: Sparsity

- □ Lecun et al., Optimal Brain Damage," NeurIPS 1990
- Han et al., "Learning both weights and connections for efficient neural networks," NeurIPS 2015
- Albericio et al., "Cnvlutin: Ineffectual-neuron-free deep neural network computing", ISCA 2016

Co-Design: Efficient Network Architectures

- Howard et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications", arXiv 2017
- Zhang et al., "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices," CVPR 2018
- □ Lin et al., "Network in network" ICLR 2014
- □ Huang et al., "Densely Connected Convolutional Networks," CVPR 2017
- □ Yu et al., "Deep layer aggregation," CVPR 2018
- Zoph at al., "Learning Transferable Architectures for Scalable Image Recognition," CVPR 2018

Co-Design: Hardware in the Loop

- Yang et al., "Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning," CVPR 2017, <u>http://eyeriss.mit.edu/energy.html</u>
- Yang et al., "NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications," ECCV 2018, <u>http://netadapt.mit.edu</u>

References (4 of 4)

Specialized Hardware (ASICs): Flexibility and Scalability

- Chen et al., "Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural Networks," SysML 2018, <u>https://www.youtube.com/watch?v=XCdy5egmvaU</u>
- Chen et al., "Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices," JETCAS 2019
- □ Zimmer et al., "A 0.11pJ/Op, 0.32-128 TOPS, Scalable Multi-Chip-Module-based Deep Neural Network Accelerator with Ground-Reference Signaling in 16nm," VLSI 2019
- □ Lie (Cerebras), "Wafer Scale Deep Learning," Hot Chips 2019

Other Platforms: Processing In Memory / In-Memory Computing and FPGAs

- Sze et al., "How to Understand and Evaluate Deep Learning Processors," ISSCC Tutorial 2020, <u>http://isscc.org/</u>
- □ Verma et al., "In-Memory Computing: Advances and prospects," ISSCC Tutorial 2018 / SSCS Magazine 2019
- □ Yu, "Neuro-Inspired Computing with Emerging Nonvolatile Memorys," Proc. IEEE 2018
- Yang et al., "Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators," IEDM 2019
- □ Fowers et al., "A configurable cloud-scale DNN processor for real-time AI," ISCA 2018

DNN Processor Evaluation Tools

- Wu et al., "Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs," ICCAD 2019, <u>http://accelergy.mit.edu</u>
- Parashar et al., "Timeloop: A Systematic Approach to DNN Accelerator Evaluation," ISPASS 2019

NetAdapt: Problem Formulation

 $\max_{Net} Acc(Net) \text{ subject to } Res_j(Net) \leq Bud_j, j = 1, \cdots, m$

Break into a set of simpler problems and solve iteratively

 $\max_{Net_i} Acc(Net_i) \text{ subject to } Res_j(Net_i) \leq Res_j(Net_{i-1}) - \Delta R_{i,j}, j = 1, \cdots, m$

*Acc: accuracy function, Res: resource evaluation function, **ΔR: resource reduction**, Bud: given budget

• Advantages

- Supports multiple resource budgets at the same time
- Guarantees that the budgets will be satisfied because the resource consumption decreases monotonically
- Generates a family of networks (from each iteration) with different resource versus accuracy trade-offs

NetAdapt: Simplified Example of One Iteration

