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Compute Demands for Deep Neural Networks 
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Source: Open AI (https://openai.com/blog/ai-and-compute/)

[Strubell, ACL 2019]

Petaflop/s-days 
(exponential)

Year

AlexNet to AlphaGo Zero: 
A 300,000x Increase in Compute
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Processing at the “Edge” instead of the “Cloud”

Communication Privacy Latency
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Deep Neural Networks for Self-Driving Cars

(Feb 2018)

Cameras and radar generate ~6 
gigabytes of data every 30 seconds. 

Prototypes use around 2,500 Watts. 
Generates wasted heat and some 
prototypes need water-cooling!
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Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
NeurIPS 2019Vivienne Sze (   @eems_mit) 5



Transistors Are Not Getting More Efficient

Slowdown of Moore’s Law 
and Dennard Scaling 

General purpose 
microprocessors not getting 

faster or more efficient 

Need specialized / 
domain-specific hardware 

for significant improvements in 
speed and energy efficiency

Slowdown
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Image Source: [Dean, ISSCC 2020]

Moore’s Law

Goals of this Tutorial

o Many approaches for efficient processing of DNNs. Too many to cover!

Number of DNN processor papers at
top-tier hardware conferences

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Neural
Networks

Deep
Learning

Image Source: [Sze, PIEEE 2017]
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Goals of this Tutorial

o Many approaches for efficient processing of DNNs. Too many to cover!

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Neural
Networks

Deep
Learning

Image Source: [Sze, PIEEE 2017]

NeurIPS 2019Vivienne Sze (   @eems_mit)

Big Bets On A.I. Open a New Frontier for 
Chips Start-Ups, Too. (January 14, 2018)

“Today, at least 45 start-ups are working 
on chips that can power tasks like speech 
and self-driving cars, and at least five of 
them have raised more than $100 million 
from investors. Venture capitalists 
invested more than $1.5 billion in chip 
start-ups last year, nearly doubling the 
investments made two years ago, according 
to the research firm CB Insights.”
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Goals of this Tutorial

o Many approaches for efficient processing of DNNs. Too many to cover!

o We will focus on how to evaluate approaches for efficient processing of DNNs
n Approaches include the design of DNN hardware processors and DNN models
n What are the key questions to ask?

o Specifically, we will discuss
n What are the key metrics that should be measured and compared? 
n What are the challenges towards achieving these metrics?
n What are the design considerations and tradeoffs? 

o We will focus on inference, but many concepts covered also apply to training
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Tutorial Overview

o Deep Neural Networks Overview (Terminology)
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain-Specific Hardware (ASICs)
n Break Q&A
n Algorithm (DNN Model) and Hardware Co-Design
n Other Platforms

o Tools for Systematic Evaluation of DNN Processors
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What are Deep Neural Networks?

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features
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Weighted Sums

Key operation is 
multiply and accumulate (MAC)
Accounts for > 90% of computation 

Yj = activation Wij × Xi
i=1
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Sigmoid
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Rectified Linear Unit (ReLU)
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y=max(0,x)y=1/(1+e-x)

Image source: Caffe tutorial
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Popular Types of Layers in DNNs
o Fully Connected Layer

n Feed forward, fully connected

n Multilayer Perceptron (MLP)
o Convolutional Layer

n Feed forward, sparsely-connected w/ weight sharing
n Convolutional Neural Network (CNN)
n Typically used for images

o Recurrent Layer
n Feedback
n Recurrent Neural Network (RNN)
n Typically used for sequential data (e.g., speech, language)

o Attention Layer/Mechanism
n Attention (matrix multiply) + feed forward, fully connected 
n Transformer [Vaswani, NeurIPS 2017]

FeedbackFeed 
Forward

Input Layer

Output Layer

Hidden Layer

Input Layer
Output Layer

Hidden Layer

Sparsely
Connected

Fully
Connected
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High-Dimensional Convolution in CNN

R 

S 

H 

a plane of input activations 
a.k.a. input feature map (fmap) 

filter (weights) 

W 
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High-Dimensional Convolution in CNN

R 

filter (weights) 

input fmap 

S 

Element-wise 
Multiplication 

H 

W 
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High-Dimensional Convolution in CNN

R 

filter (weights) 

S 

E 

F 
Partial Sum (psum) 

Accumulation 

input fmap output fmap 

Element-wise 
Multiplication 

H 

W 

an output  
activation 
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High-Dimensional Convolution in CNN

H 
R 

filter (weights) 
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E 

Sliding Window Processing 

input fmap 
an output  
activation 

output fmap 

W F 
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High-Dimensional Convolution in CNN

AlexNet: 3 – 192 Channels (C) 
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High-Dimensional Convolution in CNN
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AlexNet: 96 – 384 Filters (M) 
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High-Dimensional Convolution in CNN
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Define Shape for Each Layer

H – Height of input fmap (activations) 
W – Width of input fmap (activations)
C – Number of 2-D input fmaps /filters
(channels)
R – Height of 2-D filter (weights)
S – Width of 2-D filter (weights)
M – Number of 2-D output fmaps (channels)
E – Height of output fmap (activations)
F – Width of output fmap (activations)
N – Number of input fmaps/output fmaps
(batch size)

Shape varies across layers
Filters
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Layers with Varying Shapes

Block Filter Size (RxS) # Filters (M) # Channels (C)
1 3x3 16 3

3 1x1 64 16
3 3x3 64 1
3 1x1 24 64

6 1x1 120 40
6 5x5 120 1
6 1x1 40 120

MobileNetV3-Large Convolutional Layer Configurations

[Howard, ICCV 2019]
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…
…

…
22



Popular DNN Models
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50 EfficientNet-B4

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7*
Input Size 28x28 227x227 224x224 224x224 224x224 380x380
# of CONV Layers 2 5 16 21 (depth) 49 96
# of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M
# of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G
# of FC layers 2 3 3 1 1 65**
# of Weights 58k 58.6M 124M 1M 2M 4.9M
# of MACs 58k 58.6M 124M 1M 2M 4.9M
Total Weights 60k 61M 138M 7M 25.5M 19M
Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G
Reference Lecun, 

PIEEE 1998
Krizhevsky, 
NeurIPS 2012

Simonyan, 
ICLR 2015

Szegedy, 
CVPR 2015

He, 
CVPR 2016

Tan, 
ICML 2019

NeurIPS 2019Vivienne Sze (   @eems_mit)

DNN models getting larger and deeper
*   Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)
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Key Metrics and Design 
Objectives
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Key Metrics: Much more than OPS/W!
o Accuracy

n Quality of result
o Throughput

n Analytics on high volume data
n Real-time performance (e.g., video at 30 fps)

o Latency
n For interactive applications (e.g., autonomous navigation)

o Energy and Power
n Embedded devices have limited battery capacity
n Data centers have a power ceiling due to cooling cost

o Hardware Cost
n $$$

o Flexibility 
n Range of DNN models and tasks

o Scalability
n Scaling of performance with amount of resources

ImageNet

Computer 
Vision

Speech 
Recognition

[Sze, CICC 2017]

MNIST

Data CenterEmbedded Device

NeurIPS 2019Vivienne Sze (   @eems_mit)

CIFAR-10
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Key Design Objectives of DNN Processor

o Increase Throughput and Reduce Latency
n Reduce time per MAC 

o Reduce critical path à increase clock frequency
o Reduce instruction overhead

n Avoid unnecessary MACs (save cycles)
n Increase number of processing elements (PE) à more MACs in parallel

o Increase area density of PE or area cost of system
n Increase PE utilization* à keep PEs busy

o Distribute workload to as many PEs as possible
o Balance the workload across PEs
o Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

o Low latency has an additional constraint of small batch size 

*(100% = peak performance)
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism (Depends on DNN Model)
Step 2: max dataflow parallelism
Number of PEs (Theoretical Peak Performance)peak

performance

MAC/cycle

MAC/data

[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928 ] 

A systematic way of understanding the 
performance limits for DNN hardware 
as a function of specific characteristics of 

the DNN model and hardware design
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Eyexam: Performance Evaluation Framework

Number of PEs (Theoretical Peak Performance)peak
performance

Slope = BW to PEs

MAC/cycle

MAC/data

Bandwidth (BW)
Bounded 

Compute
Bounded [Williams, CACM 2009] 

Based on Roofline Model
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

Slope = BW to only active PE

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928

PE

C

M
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Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

workload operational intensity

Step 6: lower act. PE util. due to insufficient average BW
Step 7: lower act. PE util. due to insufficient instantaneous BW

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928
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Key Design Objectives of DNN Processor
o Reduce Energy and Power 

Consumption
n Reduce data movement as it 

dominates energy consumption
o Exploit data reuse

n Reduce energy per MAC 
o Reduce switching activity and/or 

capacitance
o Reduce instruction overhead

n Avoid unnecessary MACs

o Power consumption is limited by 
heat dissipation, which limits the 
maximum # of MACs in parallel 
(i.e., throughput)

NeurIPS 2019Vivienne Sze (   @eems_mit)

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]
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Key Design Objectives of DNN Processor

o Flexibility
n Reduce overhead of supporting flexibility 
n Maintain efficiency across wide range of DNN models 

o Different layer shapes impact the amount of
n Required storage and compute
n Available data reuse that can be exploited

o Different precision across layers & data types (weight, activation, partial sum)
o Different degrees of sparsity (number of zeros in weights or activations)
o Types of DNN layers and computation beyond MACs (e.g., activation functions)

o Scalability
n Increase how performance (i.e., throughput, latency, energy, power) 

scales with increase in amount of resources (e.g., number of PEs, amount 
of memory, etc.)

NeurIPS 2019Vivienne Sze (   @eems_mit) 32



Specifications to Evaluate Metrics
o Accuracy

n Difficulty of dataset and/or task should be considered
n Difficult tasks typically require more complex DNN models

o Throughput
n Number of PEs with utilization (not just peak performance)
n Runtime for running specific DNN models

o Latency
n Batch size used in evaluation

o Energy and Power
n Power consumption for running specific DNN models
n Off-chip memory access (e.g., DRAM)

o Hardware Cost 
n On-chip storage, # of PEs, chip area + process technology

o Flexibility 
n Report performance across a wide range of DNN models
n Define range of DNN models that are efficiently supported 

DRAM

Chip

[Sze, CICC 2017]

Computer 
Vision

Speech 
Recognition

Off-chip 
memory 
access

NeurIPS 2019Vivienne Sze (   @eems_mit)

ImageNetMNIST CIFAR-10
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Comprehensive Coverage for Evaluation

o All metrics should be reported for fair evaluation of design 
tradeoffs

o Examples of what can happen if a certain metric is omitted:
n Without the accuracy given for a specific dataset and task, one could 

run a simple DNN and claim low power, high throughput, and low cost –
however, the processor might not be usable for a meaningful task

n Without reporting the off-chip memory access, one could build a 
processor with only MACs and claim low cost, high throughput, high 
accuracy, and low chip power – however, when evaluating system power, 
the off-chip memory access would be substantial

o Are results measured or simulated? On what test data?
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Example Evaluation Process

The evaluation process for whether a DNN processor is a viable 
solution for a given application might go as follows: 

1. Accuracy determines if it can perform the given task 
2. Latency and throughput determine if it can run fast enough 

and in real-time
3. Energy and power consumption will primarily dictate the 

form factor of the device where the processing can operate 
4. Cost, which is primarily dictated by the chip area, determines 

how much one would pay for this solution
5. Flexibility determines the range of tasks it can support
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CPU & GPU Platforms
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CPUs and GPUs Targeting DNNs

Intel Xeon (Cascade Lake) Nvidia Tesla (Volta)

Use matrix multiplication libraries on CPUs and GPUs

NeurIPS 2019Vivienne Sze (   @eems_mit)

AMD Radeon (Instinct)
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Map DNN to a Matrix Multiplication

Fully connected layer can be directly represented as matrix multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

Note: Matrix multiplication also heavily used 
by recurrent and attention layersIn fully connected layer, filter size (R, S) same as input size (H, W)

H

W

…

…

…C…

1

…

M

…

input fmaps output fmaps

…

filters

…

…

…

H

…

…C… …

1
…

…

N N

1
1

W 1

H

…

…C…

M
W

H

W

…

…

…C…

1
1

M
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Map DNN to a Matrix Multiplication 

Convolutional layer can be converted to Toeplitz Matrix

Convolution

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =
Filter Input Fmap Output Fmap

Matrix Multiply (by Toeplitz Matrix)

Data is repeated
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CPU, GPU Libraries for Matrix Multiplication

o Implementation: Matrix Multiplication (GEMM)

n CPU: OpenBLAS, Intel MKL, etc

n GPU: cuBLAS, cuDNN, etc

o Library will note shape of the matrix multiply and select 
implementation optimized for that shape 

o Optimization usually involves proper tiling to memory hierarchy
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M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

Tiling Matrix Multiplication 

Matrix multiplication tiled to fit in cache (i.e., on-chip memory) 
and computation ordered to maximize reuse of data in cache
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M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Step 1

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Step 2
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Analogy: Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

Reduce number of multiplications to 
increase throughput

NeurIPS 2019Vivienne Sze (   @eems_mit) 42



Reduce Operations in Matrix Multiplication

o Fast Fourier Transform [Mathieu, ICLR 2014]

n Pro: Direct convolution O(No
2Nf

2) to O(No
2log2No)

n Con: Increase storage requirements
o Strassen [Cong, ICANN 2014] 

n Pro: O(N3) to (N2.807)
n Con: Numerical stability

o Winograd [Lavin, CVPR 2016] 

n Pro: 2.25x speed up for 3x3 filter
n Con: Specialized processing depending on filter size

Compiler selects transform based on filter size
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Reduce Instruction Overhead
o Perform more MACs per instruction

n CPU: SIMD / Vector Instructions 
o e.g., Specialized Vector Neural Network Instructions (VNNI) fuse separate multiply and add 

instructions into single MAC instruction and avoid storing intermediate values in memory
n GPU: SIMT / Tensor Instructions

o e.g., New opcode Matrix Multiply Accumulate (HMMA) performs 64 MACs with Tensor Core 

o Perform more MACs per cycle without increasing memory bandwidth by 
adding support for reduced precision
n e.g., If access 512 bits per cycle, can perform 64 8-bit MACs vs. 16 32-bit MACs

Tensor Core
Image Source: Nvidia
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Design Considerations for CPU and GPU 
o Software (compiler)

n Reduce unnecessary MACs: Apply transforms 
n Increase PE utilization: Schedule loop order and tile data to increase data reuse 

in memory hierarchy 
o Hardware

n Reduce time per MAC 
o Increase speed of PEs
o Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core) 

à requires additional hardware
n Increase number of parallel MACs

o Increase number of PEs on chip à area cost
o Support reduced precision in PEs

n Increase PE utilization 
o Increase on-chip storage à area cost
o External memory BW à system cost
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Specialized / Domain-
Specific Hardware
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Properties We Can Leverage
q Operations exhibit high parallelism

à high throughput possible

q Memory Access is the Bottleneck

Vivienne Sze (   @eems_mit) NeurIPS 2019

Example: AlexNet has 724M MACs à 2896M DRAM accesses required

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
fmap act

partial sum updated 
partial sum

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM
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Properties We Can Leverage
q Operations exhibit high parallelism

à high throughput possible

q Input data reuse opportunities (e.g., up to 500x for AlexNet)
à exploit low-cost memory

Vivienne Sze (   @eems_mit) NeurIPS 2019

Filter Input Fmap

Convolutional Reuse 
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)
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Highly-Parallel Compute Paradigms
Temporal Architecture 

(SIMD/SIMT) 
Spatial Architecture 

(Dataflow Processing) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 
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Temporal Architecture 
(SIMD/SIMT) 

Register File 

Memory Hierarchy 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

ALU 

Control 

Spatial Architecture 
(Dataflow Processing) 

Memory Hierarchy 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

ALU ALU ALU ALU 

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica5on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control 

Reg File 0.5 – 1.0 kB 

  

  

Advantages of Spatial Architecture
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How to Map the Dataflow?
Spatial Architecture

(Dataflow Processing)
Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

CNN Convolution

?
activations

weights

partial
sums

Goal: Increase reuse of input data 
(weights and activations) and local 

partial sums accumulation
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Efficient Dataflows
Y.-H. Chen, J. Emer, V. Sze, 

“Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for 
Convolutional Neural Networks,”

International Symposium on Computer Architecture (ISCA), June 2016.
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Data Movement is Expensive

Maximize data reuse at low 
cost levels of memory hierarchy

DRAM Global 
Buffer 

PE 

PE PE 

ALU fetch data to run  
a MAC here 

ALU 

Buffer ALU 

RF ALU 

Normalized Energy Cost* 

200× 

6× 

PE ALU 2× 

1× 
1× (Reference) 

DRAM ALU 

0.5 – 1.0 kB 

100 – 500 kB 

NoC: 200 – 1000 PEs 

* measured from a commercial 65nm process 

Specialized hardware with small (< 1kB) 
low cost memory near compute

Farther and larger memories 
consume more power
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Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums spatially
across the PE array

• Examples: TPU [Jouppi, ISCA 2017], NVDLA

  
            

  

  

Global Buffer 

W0 W1 W2 W3 W4 W5 W6 W7 

  

  

  

  

Psum Activation 

PE 
Weight 

[Chen, ISCA 2016]
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• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations spatially
across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

Output Stationary (OS)

  
            

  

  

Global Buffer 

P0 P1 P2 P3 P4 P5 P6 P7 

  

  

  

  

Activation Weight 

PE 
Psum 

[Chen, ISCA 2016]
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• Minimize activation read energy consumption
− maximize convolutional and fmap reuse of activations

• Unicast weights and accumulate partial sums spatially
across the PE array

• Example: [SCNN, ISCA 2017]

Input Stationary (IS)

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight

[Chen, ISCA 2016]
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Row Stationary Dataflow

• Maximize row convolutional reuse in RF
− Keep a filter row and fmap sliding window in RF

• Maximize row psum accumulation in RF

PE 
b a c 

Reg File 

d c e 

c 

  
  

  
b a 

[Chen, ISCA 2016]

1D convolution 
within PE
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Row Stationary Dataflow

Optimize for 
overall energy efficiency 
instead for only a certain 

data type

[Chen, ISCA 2016]

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 
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Eyeriss: Deep Neural Network Accelerator

On
-ch

ip 
Bu

ffe
r Spatial 

PE Array

4mm

4m
m

[Chen, ISSCC 2016]

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Exploits data reuse for 100x reduction in memory accesses from global 
buffer and 1400x reduction in memory accesses from off-chip DRAM
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Features: Energy vs. Accuracy 

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

En
er

gy
/P

ix
el

 (n
J)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015] 

Exponential

Linear

Video 
Compression

[Suleiman, ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does 
not include data, classification 

energy, augmentation and 
ensemble, etc.

On
-c

hip
 B

uff
er Spatial 

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2

NeurIPS 2019Vivienne Sze (   @eems_mit) 60



Break for Q&A
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Algorithm (DNN Model) 
& Hardware Co-Design
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Algorithm & Hardware Co-Design

o Co-design algorithm + hardware à better than what each could achieve alone

o Co-design approaches can be loosely grouped into two categories:
n Reduce size of operands for storage/compute (Reduced Precision)
n Reduce number of operations for storage/compute (Sparsity and Efficient 

Network Architecture)

o Hardware support required to increase savings in latency and energy
n Ensure that overhead of hardware support does not exceed benefits

o Unlike previously discussed approaches, these approaches can affect accuracy!
n Evaluate tradeoff between accuracy and other metrics
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Reduced Precision
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Why Reduce Precision (i.e., Reduce Bit Width)?
o Reduce data movement and storage cost for inputs and outputs of MAC

n Smaller memory à lower energy
o Reduce cost of MAC 

n Cost of multiply increases with bit width (n) à energy and area by O(n2); delay by O(n)

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Note: Bit width for multiplication and accumulation in a MAC are different
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Impact of Reduced Precision on Energy & Area

[Horowitz, ISSCC 2014]

Operation: Energy 
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area 
(µm2)

36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103
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What Determines Bit Width?
o Number of unique values

n e.g., M-bits to represent 2M values
o Dynamic range of values 

n e.g., E-bits to scale values by 2(E-127)

o Signed or unsigned values
n e.g., signed requires one extra bit (S)

o Total bits = S+E+M

o Floating point (FP) allows range to 
change for each value (E-bits) 

o Fixed point (Int) has fixed range

o Default CPU/GPU is 32-bit float (FP32)

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range

10-38 – 1038

6x10-5 - 6x104 

0 – 2x109

0 – 6x104

0 – 127

Image Source: B. Dally

Common Numerical Representations
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What Determines Bit Width?

o For accuracy, require sufficient precision to represent 
different data types

n For inference: weights, activations, and partial sums

n For training: weights, activations, partial sums, gradients, 
and weight update

n Required precision can vary across data types 
o Referred to as mixed precision
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What Determines Bit Width?
o Reduce number of unique values (M-bits, a.k.a. mantissa)

n Default: Uniform quantization (values are equally spaced out)
n Non-uniform quantization (spacing can be computed, e.g., logarithmic, or 

with look-up-table)
n Fewer unique values can make transforms and compression more effective

NeurIPS 2019Vivienne Sze (   @eems_mit)

Image Source:[Lee, ICASSP 2017]
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What Determines Bit Width?
o Reduce number of unique values (M-bits, a.k.a. mantissa)

n Default: Uniform quantization (values are equally spaced out)
n Non-uniform quantization (spacing can be computed, e.g., logarithmic, or 

with look-up-table)
n Fewer unique values can make transforms and compression more effective

o Reduce dynamic range (E-bits, a.k.a., exponent)
n If possible, fix range (i.e., used fixed point, E=0)
n Share range across group of values (e.g., weights for a layer or channel)

o Tradeoff between number of bits allocated to M-bits and E-bits

NeurIPS 2019Vivienne Sze (   @eems_mit)

S E E E E EMMMMMMMMMMfp16 (S=1, E=5, M=10)

S E E E E E E E EMMMMMMMbfloat16 (S=1, E=8, M=7)

range: ~5.9e-8 to ~6.5e4

range: ~1e-38 to ~3e38
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Commercial Products Support Reduced Precision

Nvidia’s Pascal (2016) Google’s TPU (2016)
TPU v2 & v3 (2019)

8-bit fixed for Inference & 16-bit float for Training

Intel’s NNP-L (2019)
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Reduced Precision in Research

o Reduce number of bits 
n Binary Nets [Courbariaux, NeurIPS 2015] 

o Reduce number of unique weights and/or activations
n Ternary Weight Nets [Li, NeurIPS Workshop 2016]
n XNOR-Net [Rategari, ECCV 2016]

o Non-Linear Quantization
n LogNet [Lee, ICASSP 2017]

o Training
n 8-bit with stochastic rounding 
[Wang, NeurIPS 2018]

Binary Filters

Log Domain Quantization
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Precision Scalable MACs for Varying Precision

Conventional data-gated MAC
Gate unused logic (e.g., full adders) 

to reduce energy consumption

[Camus, JETCAS 2019]

Full precision 8bx8b 4bx4b 2bx8b

Many approaches add logic to increase 
utilization for higher throughput/area;

however, overhead can reduce benefits

4bx4b

1.3x

1.6x

Evaluation of 19 precision scalable MAC designs
5% of values 8bx8b

95% of values at 2bx2b and 4bx4b

Conventional 
data-gated
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Design Considerations for Reduced Precision
o Impact on accuracy 

n Must consider difficulty of dataset, task, and DNN model
o e.g., Easy to reduce precision for an easy task (e.g., digit classification); 

does method work for a more difficult task?

o Does hardware cost exceed benefits?
n Need extra hardware to support variable precision

o e.g., Additional shift-and-add logic and registers for variable precision 
n Granularity impacts hardware overhead as well as accuracy

o e.g., More overhead to support (1b, 2b, 3b … 16b) than (2b, 4b, 8b, 16b) 

o Evaluation 
n Use 8-bit for inference and 16-bit float for training for baseline 
n 32-bit float is a weak baseline 
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Sparsity
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Why Increase Sparsity?

o Reduce number of MACs
n Anything multiplied by zero is zero à avoid performing unnecessary MACs 
n Reduce energy consumption and latency

o Reduce data movement
n If one of the inputs to MAC is zero, can avoid reading the other input
n Compress data by only sending non-zero values

o CPU/GPU libraries typically only support really high sparsity (> 99%) 
due to the overhead
n Sparsity for DNNs typically much lower à need specialized hardware
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Sparsity in Activation Data

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU

9 0 0
1 0 5
0 6 0

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5
CONV Layer

# of activations # of non-zero activations

(Normalized)

[Chen, ISSCC 2016]
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Data Gating / Zero Skipping

Eyeriss [Chen, ISSCC 2016]

Filter  
Scratch Pad 

(225x16b SRAM) 

Partial Sum 
Scratch Pad 

(24x16b REG) 

Filt 

Img 

Input 
Psum 

2-stage 
pipelined  
multiplier 

Output 
Psum   

0 

Accumulate 
Input Psum 

1 

0 

== 0 Zero 
Buffer 

Enable 
  

Image 
Scratch Pad 

(12x16b REG)   

  

  

0 
1 

   

  

    

  

  

    

Skip MAC and mem reads  
when image data is zero. 

Reduce PE power by 45% 

Reset 

Cnvlutin [Albericio, ISCA 2016]

Gate operations 
(reduce power consumption)

Skip operations
(increase throughput)
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Apply Compression to Reduce Data Movement

[Chen, ISSCC 2016]

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM 
Access 
(MB) 

0

2

4

6
1.2�

1.4�
1.7�

1.8�
1.9�

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

Simple RLC within 5% - 10% of theoretical entropy limit

Example: Eyeriss compresses activations to reduce DRAM BW

… 

… 

… 

… 

…
 

…
 

ReLU 

Input Image 

Output Image 

Filter Filt 

Img 

Psum 

Psum 

Buffer 
SRAM 

 
108KB 

14×12 PE Array 

  

  

Link Clock  Core Clock  

Run-Length Compression (RLC)  

Example: 

Output (64b): 

Input:  0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, … 

5b 16b 1b 5b 16b 5b 16b 
2 12 4 53 2 22 0 

Run Level Run Level Run Level Term 
  

Off-Chip DRAM 
64 bits 

Decomp 

Comp 

DCNN Accelerator DNN Accelerator 
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Pruning – Make Weights Sparse
Optimal Brain Damage

[Lecun, NeurIPS 1990]

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Prune DNN based on 
magnitude of weights

[Han, NeurIPS 2015]

Example: AlexNet
Weight Reduction:  CONV layers 2.7x, 

FC layers 9.9x
Overall Reduction:  Weights 9x, MACs 3x

retraining
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Unstructured or Structured Sparsity 
Increase coarseness

Image Source: [Mao, CVPR Workshop 2017]

Benefits:
Increase coarseness à more structure in sparsity (easier for hardware)
Less signaling overhead for location of zeros à better compression
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Design Considerations for Sparsity

o Impact on accuracy 
n Must consider difficulty of dataset, task, and DNN model

o e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights; 
does method work on efficient DNN models?

o Does hardware cost exceed benefits?
n Need extra hardware to identify sparsity

o e.g., Additional logic to identify non-zeros and store non-zero locations
n Accounting for sparsity in both weights and activations is challenging

o Need to compute intersection of two data streams rather than find next non-zero in one
n Granularity impacts hardware overhead as well as accuracy

o e.g., Fine-grained or coarse-grained (structured) sparsity 
n Compressed data will be variable length

o Reduced flexibility in access order à random access will have significant overhead
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Efficient Network 
Architectures
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Efficient DNN Models
o Design efficient DNN Models  

n Tends to increase variation of layer shapes (e.g., R, S, C) that need to be supported
n Can be handcrafted or learned using Network/Neural Architecture Search (NAS)

Year Accuracy* # Layers # Weights # MACs
AlexNet 2012 80.4% 8 61M 724M

MobileNet[1] 2017 89.5% 28 4M 569M[1]

* ImageNet Classification Top-5

Filter Decomposition

R

S

C …

…

…

R

S

…
…

C

1
1

*

Bottleneck Layer

Reduce number of 
channels before large 
filter convolution

Decompose 
large filters into 
smaller filters

NeurIPS 2019Vivienne Sze (   @eems_mit)

1x1 convolutionsFilter Decomposition
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Manual Network Design

o Reduce Spatial Size (R, S)
n stacked filters

o Reduce Channels (C)
n 1x1 convolution, group of filters

o Reduce Filters (M)
n feature map reuse across layers

o Layer Pooling 
n global pooling before FC layer

NeurIPS 2019Vivienne Sze (   @eems_mit)
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…
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Output fmaps

…

E

F
N

85



Reduce Spatial Size (R, S): Stacked Filter

decompose 

5x5 filter 5x1 filter 

1x5 filter 

Apply sequentially 

GoogleNet/
Inception v3 separable 

filters

5x5 filter Two 3x3 filters 

decompose 

Apply sequentially 

VGG

Replace a large filter with a series of smaller filters
NeurIPS 2019Vivienne Sze (   @eems_mit) 86



Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Modified image from source: 
Stanford cs231n

1
56

56

filter1
(1x1x64)

NeurIPS 2019Vivienne Sze (   @eems_mit)

[Lin, ICLR 2014]
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Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Modified image from source: 
Stanford cs231n

filter2
(1x1x64)

2
56

56

NeurIPS 2019Vivienne Sze (   @eems_mit)

[Lin, ICLR 2014]
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Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Modified image from source: 
Stanford cs231n

[Lin, ICLR 2014]

32
56

56
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GoogLeNet:1x1 Convolution

1x1 convolutions to 
reduce number of weights 
and multiplications

Inception 
Module

[Szegedy, CVPR 2015]

Apply 1x1 convolution before ‘large’ convolution filters.
Reduce weights such that entire CNN can be trained on one GPU.

Number of multiplications reduced from 854M à 358M
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Reduce Channels (C): Group of Filters

Split filters and channels of 
feature map into different groups

e.g., For two groups, each filter 
requires 2x fewer weights and 

multiplications

HR

S

… …

…

C/2

input fmap

output fmap1

…

…

……C…filter1

E

W F
input fmap

output fmap2
……

E

F

H …

…

……C…

W

R

… …

…

C/2 filter2

S
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Reduce Channels (C): Group of Filters

The extreme case is 
depthwise convolution –

each group contains only one 
channel

HR

S

input fmap

output fmap1

…

…

……C…filter1

E

W F
input fmap

output fmapC
……

E

F

H …

…

……C…

W

R

filterC

S
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Reduce Channels (C): Group of Filters
Two ways of mixing information across groups

Pointwise (1x1) Convolution
(Mix in one step)

MobileNet [Howard, arXiv 2017]

Shuffle Operation
(Mix in multiple steps)

ShuffleNet [Zhang, CVPR 2018]

C
1

1

S

R

1

R

S
C

+

fmap 0

layer 1

fmap 1

layer 2

fmap 2
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Reduce Filters (M): Feature Map Reuse
…

R

S
1

C
…

…

…

M Filters
…

R

S
K

C …

…

…

R

S
M

C …

…

…

…

Output fmap with M channels

L
2

L
3

L
1

Reuse (M-K) channels in feature maps 
from previously processed layers

[Huang, CVPR 2017]

DenseNet reuses feature map 
from multiple layers

M-K

M

F
……

……

E
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Layer Pooling: Simplify FC Layers

First FC layer accounts 
for a significant portion 
of weights 

38M of 61M for AlexNet

[Krizhevsky, NeurIPS 2012]
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Layer Pooling: Simplify FC Layers

[Lin, ICLR 2014] 

NeurIPS 2019Vivienne Sze (   @eems_mit)

Global Pooling reduces the size 
of the input to the first FC layer, 

which reduces its size

H
…

input fmap

output fmap1

…

C

1

W
1

H …

…C

W

…

filter1

H

input fmap

output fmap1

…

C

1

W
1

Pool(e.g., HxWxCx1000 à 1x1xCx1000) 
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Network/Neural Architecture Search (NAS)

3x3? 5x5?

128 Filters?

Pool? CONV?

Rather than handcrafting the architecture, automatically search for it
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Network/Neural Architecture Search (NAS)
o Three main components:

n Search Space (what is the set of all samples)
n Optimization Algorithm (where to sample)
n Performance Evaluation (how to evaluate samples)

Key Metrics: Achievable DNN accuracy and required search time

Search 
Space

Performance 
Evaluation Evaluation

Result

Optimization 
Algorithm

Next Location 
to Sample

Sampled
Network

Final  
Network
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Evaluate NAS Search Time

!"#$%&' = %)#'&#*+$' × !"#$*$-_'&#*+$

!"#$%&' ∝ %)#%&'_!)%"%0 × %)#%&'_'!$*' × '"1$'$&-23_'*&2$ × (!"#$!-&"% + !"#$$6&+)

(1) Shrink the 
search space

(2) Improve the 
optimization algorithm

(3) Simplify the 
performance 
evaluation

Goal: Improve the efficiency of NAS in the three main components

NeurIPS 2019Vivienne Sze (   @eems_mit)

Search 
Space

Performance 
Evaluation

Optimization 
Algorithm
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(1) Shrink the Search Space

o Trade the breadth of architectures 
for search speed

o May limit the performance that 
can be achieved

o Use domain knowledge from manual 
network design to help guide the 
reduction of the search space

Architecture
Universe
Architecture
Universe

Search Space

Optimal

Optimal

NeurIPS 2019Vivienne Sze (   @eems_mit)
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(1) Shrink the Search Space

o Search space = layer operations + connections between layers

• Identity
• 1x3 then 3x1 convolution

• 1x7 then 7x1 convolution  
• 3x3 dilated convolution
• 1x1 convolution  

• 3x3 convolution

• 3x3 separable convolution  
• 5x5 separable convolution

• 3x3 average pooling  
• 3x3 max pooling
• 5x5 max pooling  

• 7x7 max pooling

Common layer operations

[Zoph, CVPR 2018]
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(1) Shrink the Search Space

o Search space = layer operations + connections between layers

Image Source: [Zoph, CVPR 2018]
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Smaller Search Space
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(2) Improve Optimization Algorithm
Random Gradient DescentCoordinate Descent

Reinforcement Learning BayesianEvolutionary
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(3) Simplify the Performance Evaluation

o NAS needs only the rank of the performance values
o Method 1: approximate accuracy

Proxy Task Early Termination Accuracy Prediction

E.g., Smaller resolution, 
simpler tasks

Stop training earlier

A
cc

u
ra

cy

Iteration

Stop

Extrapolate accuracy

A
cc

u
ra

cy

Iteration

Predict
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(3) Simplify the Performance Evaluation

o NAS needs only the rank of the performance values
o Method 2: approximate weights
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Copy Weights Estimate Weights

Reuse weights from 
other similar networks

Infer the weights from the 
previous feature maps

Copy
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(3) Simplify the Performance Evaluation

o NAS needs only the rank of the performance values
o Method 3: approximate metrics (e.g., latency, energy)
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Look-Up TableProxy Metric

Use an easy-to-compute 
metric to approximate target

Use table lookup

Latency # MACs
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Design Considerations for NAS

o The components may not be chosen individually
n Some optimization algorithms limit the search space
n Type of performance metric may limit the selection of the 

optimization algorithms

o Commonly overlooked properties
n The complexity of implementation
n The ease of tuning hyperparameters of the optimization
n The probability of convergence to a good architecture
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Hardware In the Loop
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How to Evaluate Complexity of DNN Model?
Number of MACs and weights are not good proxies for latency and energy

# of operations (MACs) does not 
approximate latency well

Source: Google 
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

# of weights alone is not a good metric for energy 
(All data types should be considered) 

Energy breakdown 
of GoogLeNet

https://energyestimation.mit.edu/
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Energy-Aware Pruning

Directly target energy 
and incorporate it into the 

optimization of DNNs to provide 
greater energy savings

• Sort layers based on energy and prune 
layers that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x and outperforms the 
previous work that uses magnitude-
based pruning by 1.7x

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

Ori. DC EAP 

Normalized Energy (AlexNet) 

2.1x 3.7x 

x109 

Magnitude 
Based Pruning 

Energy Aware 
Pruning 

Pruned models available at 
http://eyeriss.mit.edu/energy.html[Yang, CVPR 2017]
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NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to 
a mobile platform to reach a 
target latency or energy budget

• Use empirical measurements 
to guide optimization (avoid 
modeling of tool chain or 
platform architecture) 

• Requires very few 
hyperparameters to tune

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]

Code available at http://netadapt.mit.edu
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Improved Latency vs. Accuracy Tradeoff
o NetAdapt boosts the measured inference speed of MobileNet by up to 1.7x 

with higher accuracy

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks,” CVPR 2018

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster *Tested on the ImageNet dataset 

and a Google Pixel 1 CPU
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Design Considerations for Co-Design

o Impact on accuracy 
n Consider quality of baseline (initial) DNN model, difficulty of task and dataset
n Sweep curve of accuracy versus latency/energy to see the full tradeoff

o Does hardware cost exceed benefits?
n Need extra hardware to support variable precision and shapes or to identify 

sparsity
n Granularity impacts hardware overhead as well as accuracy

o Evaluation 
n Avoid only evaluating impact based on number of weights or MACs as they 

may not be sufficient for evaluating energy consumption and latency 
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Design Considerations for Co-Design

o Time required to perform co-design
n e.g., Difficulty of tuning affected by

o Number of hyperparameters
o Uncertainty in relationship between hyperparameters and impact on performance

o Other aspects that affect accuracy, latency or energy 
n Type of data augmentation and preprocessing
n Optimization algorithm, hyperparameters, learning rate schedule, batch size
n Training and finetuning time
n Deep learning libraries and quality of the code

o How does the approach perform on different platforms? 
n Is the approach a general method, or applicable on specific hardware?
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Training Approaches for Co-Design

1. Train from scratch

2. Use pretrained large DNN model 
a) Initialize weights for an efficient 

DNN model
b) Knowledge distillation to an 

efficient DNN model 
o Need to keep pretrained model

o No guarantees which approach 
is better (open area of research)

Complex 
DNN B 

(teacher) 

Simple DNN 
(student) 

so
ftm

ax
 

so
ftm

ax
 

Complex 
DNN A 

(teacher) so
ftm

ax
 

scores 
class  
probabilities 

Try to match 

[Bucilu, KDD 2006],[Hinton, arXiv 2015] 
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Flexibility & Scalability
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Many Efficient DNN Design Approaches

pruning 
neurons

pruning 
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm 
designer will use a given approach.
Need flexible DNN processor!

[Chen, SysML 2018]
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Limitations of Existing DNN Processors

o Specialized DNN processors often rely on certain properties of the 
DNN model in order to achieve high energy-efficiency

o Example: Reduce memory access by amortizing across PE array

PE arrayWeight
Memory

Activation
Memory

Weight reuse

Activation reuse
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Limitations of Existing DNN Processors

o Reuse depends on # of channels, feature map/batch size 
n Not efficient across all DNN models (e.g., efficient network architectures)

PE array
(spatial 

accumulation)

Number of filters
(output channels)

Number of
input channels

PE array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size1

C
1

1R

Example mapping for 
Depth-wise layer

S
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Need Flexible Dataflow

Use flexible dataflow (Row Stationary) to exploit reuse in any 
dimension of DNN to increase energy efficiency and array utilization

Example: Depth-wise layer
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Need Flexible On-Chip Network for Varying Reuse

o When reuse available, need multicast to exploit spatial data reuse for energy 
efficiency and high array utilization

o When reuse not available, need unicast for high BW for weights for FC and 
weights & activations for high PE utilization

o An all-to-all on-chip network satisfies above but too expensive and not scalable
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PE PE PEPE
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G
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ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

Unicast Networks Broadcast Network1D Multicast Networks1D Systolic Networks

[Chen, JETCAS 2019]
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Cluster

Router
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PE
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…
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High Bandwidth High Reuse Grouped Multicast Interleaved Multicast

All-to-AllMesh

[Chen, JETCAS 2019]
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Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports
o Wide range of filter shapes 

n Large and Compact
o Different Layers 

n CONV, FC, depth wise, etc.

o Wide range of sparsity 
n Dense and Sparse

o Scalable architecture

Over an order of magnitude 
faster and more energy efficient 

than Eyeriss v1

Speed up over Eyeriss v1 scales with 
number of PEs 

# of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

5.6
10.9
12.6

[Chen, JETCAS 2019]

NeurIPS 2019Vivienne Sze (   @eems_mit) 123



Design Considerations for Flexibility and Scalability 

o Many of the existing DNN processors rely on certain properties of 
the DNN model
n Properties cannot be guaranteed as the wide range techniques used for 

efficient DNN model design has resulted in a more diverse set of DNNs
n DNN processors should be sufficiently flexible to efficiently support a wide 

range of techniques

o Evaluate DNN processors on a comprehensive set of benchmarks
n MLPerf benchmark is a start, but may need more (e.g., reduced precision, 

sparsity, efficient network architectures)

o Evaluate improvement in performance as resources scales up!
n Multiple chips modules [Zimmer, VLSI 2019] and Wafer Scale [Lie, HotChips 2019]
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Design Considerations for ASIC
o Increase PE utilization

n Flexible mapping and on-chip network for different DNN models à
requires additional hardware 

o Reduce data movement
n Custom memory hierarchy and dataflows that exploit data reuse
n Apply compression to exploit redundancy in data à requires additional 

hardware
o Reduce time and energy per MAC

n Reduce precision à if precision varies, requires additional hardware; 
impact on accuracy

o Reduce unnecessary MACs
n Exploit sparsity à requires additional hardware; impact on accuracy 
n Exploit redundant operations à requires additional hardware
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Other Platforms

NeurIPS 2019Vivienne Sze (   @eems_mit) 126



Processing In Memory / In Memory Compute

o Reduce data movement by moving 
compute into memory

o Analog compute
n Increased sensitivity to circuit non-

idealities: non-linearities, process, 
voltage, and temperature variations

V1
G1

I1 = V1�G1
V2

G2

I2 = V2�G2

I = I1 + I2
= V1�G1 + V2�G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Partial sum 
is output 
current
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eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

More details in tutorial 
@ ISSCC 2020
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Field Programmable Gate Array (FPGA)
o Often implemented as matrix-vector multiply

n e.g., Microsoft Brainwave NPU [Fowers, ISCA 2018]

o A popular approach uses weight stationary 
dataflow and stores all weights on FPGA for low 
latency (batch size of 1)

o Reduced precision to fit more weights and MACs 
on FPGA
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More details in tutorial 
@ ISSCC 2020
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DNN Processor Evaluation Tools
o Require systematic way to

n Evaluate and compare wide range of 
DNN processor designs

n Rapidly explore design space
o Accelergy [Wu, ICCAD 2019]

n Early stage energy estimation tool at 
the architecture level
o Estimate energy consumption based on 

architecture level components (e.g.,      
# of PEs, memory size, on-chip network)

n Evaluate architecture level energy 
impact of emerging devices
o Plug-ins for different technologies

o Timeloop [Parashar, ISPASS 2019]

n DNN mapping tool 
n Performance Simulator à Action counts

Open-source code available at: 
http://accelergy.mit.edu

Accelergy
(Energy Estimator Tool)

Architecture
description

Action 
countsAction 
counts

Compound 
component
description

… Energy 
estimation

Energy
estimation 
plug-in 0

Energy 
estimation 
plug-in 1

Timeloop
(DNN Mapping Tool & 

Performance Simulator)
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DNN Compilers for Diverse DNN Platforms

https://github.com/pytorch/glow
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https://tvm.apache.org/

Compilers generate optimized code for various DNN platforms (backends) 
from high-level frameworks
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Summary

o DNNs are a critical component in the AI revolution, delivering 
record breaking accuracy on many important AI tasks for a wide range of 
applications; however, it comes at the cost of high computational 
complexity

o Efficient processing of DNNs is an important area of research with many 
promising opportunities for innovation at various levels of hardware 
design, including algorithm co-design

o When considering different DNN solutions it is important to evaluate 
with the appropriate workload in term of both input and model, and 
recognize that they are evolving rapidly

o It is important to consider a comprehensive set of metrics when 
evaluating different DNN solutions: accuracy, throughput, latency, 
power, energy, flexibility, scalability and cost
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Additional Resources
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer, 

“Efficient Processing of Deep Neural Networks: 
A Tutorial and Survey,” Proceedings of the IEEE, Dec. 2017

For updates

Book Coming Soon!

MIT Professional Education Course on 
“Designing Efficient Deep Learning Systems” 
http://professional-education.mit.edu/deeplearning

DNN tutorial website 
http://eyeriss.mit.edu/tutorial.html

More info about our research on efficient computing 
for DNNs, robotics, and health care
http://sze.mit.edu
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EEMS Mailing List
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NetAdapt: Problem Formulation

max$%& '(( )*+ ,-./*(+ +0 1*,2 )*+ ≤ 4-52, / = 1,⋯ ,:

max$%&;
'(( )*+< ,-./*(+ +0 1*,2 )*+< ≤ 1*,2 )*+<=> − ∆1<,2, / = 1,⋯ ,:

Break into a set of simpler problems and solve iteratively

*Acc: accuracy function, Res: resource evaluation function, 
ΔR: resource reduction, Bud: given budget

• Advantages
• Supports multiple resource budgets at the same time
• Guarantees that the budgets will be satisfied because the resource consumption 

decreases monotonically
• Generates a family of networks (from each iteration) with different resource versus 

accuracy trade-offs
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NetAdapt: Simplified Example of One Iteration

Code available at  
http://netadapt.mit.edu
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