
Efficient Processing of Deep Neural Networks:
from Algorithms to Hardware Architectures

Vivienne Sze
Massachusetts Institute of Technology

Slides available at
https://tinyurl.com/SzeNeurIPS2019

In collaboration with
Tien-Ju Yang, Yu-Hsin Chen, Joel Emer

NeurIPS 2019Vivienne Sze (@eems_mit) 1

https://tinyurl.com/SzeNeurIPS2019

Compute Demands for Deep Neural Networks

NeurIPS 2019Vivienne Sze (@eems_mit)

Source: Open AI (https://openai.com/blog/ai-and-compute/)

[Strubell, ACL 2019]

Petaflop/s-days
(exponential)

Year

AlexNet to AlphaGo Zero:
A 300,000x Increase in Compute

2

https://openai.com/blog/ai-and-compute/

Processing at the “Edge” instead of the “Cloud”

Communication Privacy Latency

NeurIPS 2019Vivienne Sze (@eems_mit) 3

Deep Neural Networks for Self-Driving Cars

(Feb 2018)

Cameras and radar generate ~6
gigabytes of data every 30 seconds.

Prototypes use around 2,500 Watts.
Generates wasted heat and some
prototypes need water-cooling!

NeurIPS 2019Vivienne Sze (@eems_mit) 4

Existing Processors Consume Too Much Power

< 1 Watt > 10 Watts
NeurIPS 2019Vivienne Sze (@eems_mit) 5

Transistors Are Not Getting More Efficient

Slowdown of Moore’s Law
and Dennard Scaling

General purpose
microprocessors not getting

faster or more efficient

Need specialized /
domain-specific hardware

for significant improvements in
speed and energy efficiency

Slowdown

NeurIPS 2019Vivienne Sze (@eems_mit) 6

Image Source: [Dean, ISSCC 2020]

Moore’s Law

Goals of this Tutorial

o Many approaches for efficient processing of DNNs. Too many to cover!

Number of DNN processor papers at
top-tier hardware conferences

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Neural
Networks

Deep
Learning

Image Source: [Sze, PIEEE 2017]

NeurIPS 2019Vivienne Sze (@eems_mit) 7

Goals of this Tutorial

o Many approaches for efficient processing of DNNs. Too many to cover!

Artificial Intelligence

Machine Learning

Brain-Inspired

Spiking Neural
Networks

Deep
Learning

Image Source: [Sze, PIEEE 2017]

NeurIPS 2019Vivienne Sze (@eems_mit)

Big Bets On A.I. Open a New Frontier for
Chips Start-Ups, Too. (January 14, 2018)

“Today, at least 45 start-ups are working
on chips that can power tasks like speech
and self-driving cars, and at least five of
them have raised more than $100 million
from investors. Venture capitalists
invested more than $1.5 billion in chip
start-ups last year, nearly doubling the
investments made two years ago, according
to the research firm CB Insights.”

8

Goals of this Tutorial

o Many approaches for efficient processing of DNNs. Too many to cover!

o We will focus on how to evaluate approaches for efficient processing of DNNs
n Approaches include the design of DNN hardware processors and DNN models
n What are the key questions to ask?

o Specifically, we will discuss
n What are the key metrics that should be measured and compared?
n What are the challenges towards achieving these metrics?
n What are the design considerations and tradeoffs?

o We will focus on inference, but many concepts covered also apply to training

NeurIPS 2019Vivienne Sze (@eems_mit) 9

Tutorial Overview

o Deep Neural Networks Overview (Terminology)
o Key Metrics and Design Objectives
o Design Considerations

n CPU and GPU Platforms
n Specialized / Domain-Specific Hardware (ASICs)
n Break Q&A
n Algorithm (DNN Model) and Hardware Co-Design
n Other Platforms

o Tools for Systematic Evaluation of DNN Processors

Vivienne Sze (@eems_mit) NeurIPS 2019 10

What are Deep Neural Networks?

Input:
Image

Output:
“Volvo XC90”

Modified Image Source: [Lee, CACM 2011]

Low Level Features High Level Features

NeurIPS 2019Vivienne Sze (@eems_mit) 11

Weighted Sums

Key operation is
multiply and accumulate (MAC)
Accounts for > 90% of computation

Yj = activation Wij × Xi
i=1

3

∑
⎛

⎝
⎜

⎞

⎠
⎟

Input Layer

Output Layer

Hidden Layer

X1

X2

X3

Y1

Y2

Y3

Y4

W11

W34

Nonlinear
Activation
Function

NeurIPS 2019Vivienne Sze (@eems_mit)

Sigmoid
1

-1

0

0 1-1

Rectified Linear Unit (ReLU)
1

-1

0

0 1-1

y=max(0,x)y=1/(1+e-x)

Image source: Caffe tutorial

12

Popular Types of Layers in DNNs
o Fully Connected Layer

n Feed forward, fully connected

n Multilayer Perceptron (MLP)
o Convolutional Layer

n Feed forward, sparsely-connected w/ weight sharing
n Convolutional Neural Network (CNN)
n Typically used for images

o Recurrent Layer
n Feedback
n Recurrent Neural Network (RNN)
n Typically used for sequential data (e.g., speech, language)

o Attention Layer/Mechanism
n Attention (matrix multiply) + feed forward, fully connected
n Transformer [Vaswani, NeurIPS 2017]

FeedbackFeed
Forward

Input Layer

Output Layer

Hidden Layer

Input Layer
Output Layer

Hidden Layer

Sparsely
Connected

Fully
Connected

NeurIPS 2019Vivienne Sze (@eems_mit) 13

High-Dimensional Convolution in CNN

R

S

H

a plane of input activations
a.k.a. input feature map (fmap)

filter (weights)

W

NeurIPS 2019Vivienne Sze (@eems_mit) 14

High-Dimensional Convolution in CNN

R

filter (weights)

input fmap

S

Element-wise
Multiplication

H

W

NeurIPS 2019Vivienne Sze (@eems_mit) 15

High-Dimensional Convolution in CNN

R

filter (weights)

S

E

F
Partial Sum (psum)

Accumulation

input fmap output fmap

Element-wise
Multiplication

H

W

an output
activation

NeurIPS 2019Vivienne Sze (@eems_mit) 16

High-Dimensional Convolution in CNN

H
R

filter (weights)

S

E

Sliding Window Processing

input fmap
an output
activation

output fmap

W F

NeurIPS 2019Vivienne Sze (@eems_mit) 17

High-Dimensional Convolution in CNN

AlexNet: 3 – 192 Channels (C)

H
R

S

…

…

…

C

input fmap

output fmap

…

…

…

…
 C …

filter

…

Many Input Channels (C)

E

W F

NeurIPS 2019Vivienne Sze (@eems_mit) 18

High-Dimensional Convolution in CNN

…

E

output fmap

…

…

many
filters (M)

Many
Output Channels (M)

M
…

R

S
1

R

S

…

…

…

C …

M

H

input fmap

…

…

…

…
 C …

C …

…

…

W F

AlexNet: 96 – 384 Filters (M)
NeurIPS 2019Vivienne Sze (@eems_mit) 19

High-Dimensional Convolution in CNN

NeurIPS 2019Vivienne Sze (@eems_mit)

…

M

…

Many
Input fmaps (N) Many

Output fmaps (N)

…

R

S

R

S

…

…

…

C …

C …

…

…

filters

…

E

F
…

…

H

…

…
 C …

H

W

…

…

…

…
 C …

…

E
…

…

1 1

N N

W F Image
batch size:
1 – 256 (N)

20

Define Shape for Each Layer

H – Height of input fmap (activations)
W – Width of input fmap (activations)
C – Number of 2-D input fmaps /filters
(channels)
R – Height of 2-D filter (weights)
S – Width of 2-D filter (weights)
M – Number of 2-D output fmaps (channels)
E – Height of output fmap (activations)
F – Width of output fmap (activations)
N – Number of input fmaps/output fmaps
(batch size)

Shape varies across layers
Filters

R

S

…

…

…C

H

W

…

…

…C

…
E

F

…

…

…M

…

…

…M

…

R

S

…

…

…C

H

W
…

…C

1

N

1

M

1

…

…

Input fmaps
Output fmaps

…

E

F
N

NeurIPS 2019Vivienne Sze (@eems_mit) 21

Layers with Varying Shapes

Block Filter Size (RxS) # Filters (M) # Channels (C)
1 3x3 16 3

3 1x1 64 16
3 3x3 64 1
3 1x1 24 64

6 1x1 120 40
6 5x5 120 1
6 1x1 40 120

MobileNetV3-Large Convolutional Layer Configurations

[Howard, ICCV 2019]

NeurIPS 2019Vivienne Sze (@eems_mit)

…
…

…
22

Popular DNN Models
Metrics LeNet-5 AlexNet VGG-16 GoogLeNet

(v1)
ResNet-50 EfficientNet-B4

Top-5 error (ImageNet) n/a 16.4 7.4 6.7 5.3 3.7*
Input Size 28x28 227x227 224x224 224x224 224x224 380x380
of CONV Layers 2 5 16 21 (depth) 49 96
of Weights 2.6k 2.3M 14.7M 6.0M 23.5M 14M
of MACs 283k 666M 15.3G 1.43G 3.86G 4.4G
of FC layers 2 3 3 1 1 65**
of Weights 58k 58.6M 124M 1M 2M 4.9M
of MACs 58k 58.6M 124M 1M 2M 4.9M
Total Weights 60k 61M 138M 7M 25.5M 19M
Total MACs 341k 724M 15.5G 1.43G 3.9G 4.4G
Reference Lecun,

PIEEE 1998
Krizhevsky,
NeurIPS 2012

Simonyan,
ICLR 2015

Szegedy,
CVPR 2015

He,
CVPR 2016

Tan,
ICML 2019

NeurIPS 2019Vivienne Sze (@eems_mit)

DNN models getting larger and deeper
* Does not include multi-crop and ensemble
** Increase in FC layers due to squeeze-and-excitation layers (much smaller than FC layers for classification)

23

Key Metrics and Design
Objectives

NeurIPS 2019Vivienne Sze (@eems_mit) 24

Key Metrics: Much more than OPS/W!
o Accuracy

n Quality of result
o Throughput

n Analytics on high volume data
n Real-time performance (e.g., video at 30 fps)

o Latency
n For interactive applications (e.g., autonomous navigation)

o Energy and Power
n Embedded devices have limited battery capacity
n Data centers have a power ceiling due to cooling cost

o Hardware Cost
n $$$

o Flexibility
n Range of DNN models and tasks

o Scalability
n Scaling of performance with amount of resources

ImageNet

Computer
Vision

Speech
Recognition

[Sze, CICC 2017]

MNIST

Data CenterEmbedded Device

NeurIPS 2019Vivienne Sze (@eems_mit)

CIFAR-10

25

Key Design Objectives of DNN Processor

o Increase Throughput and Reduce Latency
n Reduce time per MAC

o Reduce critical path à increase clock frequency
o Reduce instruction overhead

n Avoid unnecessary MACs (save cycles)
n Increase number of processing elements (PE) à more MACs in parallel

o Increase area density of PE or area cost of system
n Increase PE utilization* à keep PEs busy

o Distribute workload to as many PEs as possible
o Balance the workload across PEs
o Sufficient memory bandwidth to deliver workload to PEs (reduce idle cycles)

o Low latency has an additional constraint of small batch size

*(100% = peak performance)
NeurIPS 2019Vivienne Sze (@eems_mit) 26

Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism (Depends on DNN Model)
Step 2: max dataflow parallelism
Number of PEs (Theoretical Peak Performance)peak

performance

MAC/cycle

MAC/data

[Chen, arXiv 2019: https://arxiv.org/abs/1807.07928]

A systematic way of understanding the
performance limits for DNN hardware
as a function of specific characteristics of

the DNN model and hardware design

NeurIPS 2019Vivienne Sze (@eems_mit) 27

https://arxiv.org/abs/1807.07928

Eyexam: Performance Evaluation Framework

Number of PEs (Theoretical Peak Performance)peak
performance

Slope = BW to PEs

MAC/cycle

MAC/data

Bandwidth (BW)
Bounded

Compute
Bounded [Williams, CACM 2009]

Based on Roofline Model

NeurIPS 2019Vivienne Sze (@eems_mit) 28

Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

Slope = BW to only active PE

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928

PE

C

M
NeurIPS 2019Vivienne Sze (@eems_mit) 29

https://arxiv.org/abs/1807.07928

Eyexam: Performance Evaluation Framework

Step 1: max workload parallelism
Step 2: max dataflow parallelism

Step 3: # of active PEs under a finite PE array size
Number of PEs (Theoretical Peak Performance)

Step 4: # of active PEs under fixed PE array dimension

peak
performance

Step 5: # of active PEs under fixed storage capacity

workload operational intensity

Step 6: lower act. PE util. due to insufficient average BW
Step 7: lower act. PE util. due to insufficient instantaneous BW

MAC/cycle

MAC/data

https://arxiv.org/abs/1807.07928

NeurIPS 2019Vivienne Sze (@eems_mit) 30

https://arxiv.org/abs/1807.07928

Key Design Objectives of DNN Processor
o Reduce Energy and Power

Consumption
n Reduce data movement as it

dominates energy consumption
o Exploit data reuse

n Reduce energy per MAC
o Reduce switching activity and/or

capacitance
o Reduce instruction overhead

n Avoid unnecessary MACs

o Power consumption is limited by
heat dissipation, which limits the
maximum # of MACs in parallel
(i.e., throughput)

NeurIPS 2019Vivienne Sze (@eems_mit)

Operation: Energy
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Multiply 0.2
32b Multiply 3.1
16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Relative Energy Cost

1 10 102 103 104[Horowitz, ISSCC 2014]

31

Key Design Objectives of DNN Processor

o Flexibility
n Reduce overhead of supporting flexibility
n Maintain efficiency across wide range of DNN models

o Different layer shapes impact the amount of
n Required storage and compute
n Available data reuse that can be exploited

o Different precision across layers & data types (weight, activation, partial sum)
o Different degrees of sparsity (number of zeros in weights or activations)
o Types of DNN layers and computation beyond MACs (e.g., activation functions)

o Scalability
n Increase how performance (i.e., throughput, latency, energy, power)

scales with increase in amount of resources (e.g., number of PEs, amount
of memory, etc.)

NeurIPS 2019Vivienne Sze (@eems_mit) 32

Specifications to Evaluate Metrics
o Accuracy

n Difficulty of dataset and/or task should be considered
n Difficult tasks typically require more complex DNN models

o Throughput
n Number of PEs with utilization (not just peak performance)
n Runtime for running specific DNN models

o Latency
n Batch size used in evaluation

o Energy and Power
n Power consumption for running specific DNN models
n Off-chip memory access (e.g., DRAM)

o Hardware Cost
n On-chip storage, # of PEs, chip area + process technology

o Flexibility
n Report performance across a wide range of DNN models
n Define range of DNN models that are efficiently supported

DRAM

Chip

[Sze, CICC 2017]

Computer
Vision

Speech
Recognition

Off-chip
memory
access

NeurIPS 2019Vivienne Sze (@eems_mit)

ImageNetMNIST CIFAR-10

33

Comprehensive Coverage for Evaluation

o All metrics should be reported for fair evaluation of design
tradeoffs

o Examples of what can happen if a certain metric is omitted:
n Without the accuracy given for a specific dataset and task, one could

run a simple DNN and claim low power, high throughput, and low cost –
however, the processor might not be usable for a meaningful task

n Without reporting the off-chip memory access, one could build a
processor with only MACs and claim low cost, high throughput, high
accuracy, and low chip power – however, when evaluating system power,
the off-chip memory access would be substantial

o Are results measured or simulated? On what test data?
NeurIPS 2019Vivienne Sze (@eems_mit) 34

Example Evaluation Process

The evaluation process for whether a DNN processor is a viable
solution for a given application might go as follows:

1. Accuracy determines if it can perform the given task
2. Latency and throughput determine if it can run fast enough

and in real-time
3. Energy and power consumption will primarily dictate the

form factor of the device where the processing can operate
4. Cost, which is primarily dictated by the chip area, determines

how much one would pay for this solution
5. Flexibility determines the range of tasks it can support

NeurIPS 2019Vivienne Sze (@eems_mit) 35

CPU & GPU Platforms

NeurIPS 2019Vivienne Sze (@eems_mit) 36

CPUs and GPUs Targeting DNNs

Intel Xeon (Cascade Lake) Nvidia Tesla (Volta)

Use matrix multiplication libraries on CPUs and GPUs

NeurIPS 2019Vivienne Sze (@eems_mit)

AMD Radeon (Instinct)

37

Map DNN to a Matrix Multiplication

Fully connected layer can be directly represented as matrix multiplication

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

Note: Matrix multiplication also heavily used
by recurrent and attention layersIn fully connected layer, filter size (R, S) same as input size (H, W)

H

W

…

…

…C…

1

…

M

…

input fmaps output fmaps

…

filters

…

…

…

H

…

…C… …

1
…

…

N N

1
1

W 1

H

…

…C…

M
W

H

W

…

…

…C…

1
1

M

NeurIPS 2019Vivienne Sze (@eems_mit) 38

Map DNN to a Matrix Multiplication

Convolutional layer can be converted to Toeplitz Matrix

Convolution

1 2 3
4 5 6
7 8 9

1 2
3 4

Filter Input Fmap Output Fmap

* = 1 2
3 4

1 2 3 41 2 4 5
2 3 5 6
4 5 7 8
5 6 8 9

1 2 3 4 × =
Filter Input Fmap Output Fmap

Matrix Multiply (by Toeplitz Matrix)

Data is repeated

NeurIPS 2019Vivienne Sze (@eems_mit) 39

CPU, GPU Libraries for Matrix Multiplication

o Implementation: Matrix Multiplication (GEMM)

n CPU: OpenBLAS, Intel MKL, etc

n GPU: cuBLAS, cuDNN, etc

o Library will note shape of the matrix multiply and select
implementation optimized for that shape

o Optimization usually involves proper tiling to memory hierarchy

NeurIPS 2019Vivienne Sze (@eems_mit) 40

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=

Tiling Matrix Multiplication

Matrix multiplication tiled to fit in cache (i.e., on-chip memory)
and computation ordered to maximize reuse of data in cache

NeurIPS 2019Vivienne Sze (@eems_mit)

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Step 1

M

CHW

CHW

N

Filters Input fmaps

×

N

Output fmaps

M=
F0,0 F0,1

F1,0 F1,1

I0,0 I0,1

I1,0 I1,1

F0,0I0,0
+

F0,1I1,0

F1,0I0,0
+

F1,1I1,0

F0,0I0,1
+

F0,1I1,1

F1,0I0,1
+

F1,1I1,1

Step 2

41

Analogy: Gauss’s Multiplication Algorithm

4 multiplications + 3 additions

3 multiplications + 5 additions

Reduce number of multiplications to
increase throughput

NeurIPS 2019Vivienne Sze (@eems_mit) 42

Reduce Operations in Matrix Multiplication

o Fast Fourier Transform [Mathieu, ICLR 2014]

n Pro: Direct convolution O(No
2Nf

2) to O(No
2log2No)

n Con: Increase storage requirements
o Strassen [Cong, ICANN 2014]

n Pro: O(N3) to (N2.807)
n Con: Numerical stability

o Winograd [Lavin, CVPR 2016]

n Pro: 2.25x speed up for 3x3 filter
n Con: Specialized processing depending on filter size

Compiler selects transform based on filter size
NeurIPS 2019Vivienne Sze (@eems_mit) 43

Reduce Instruction Overhead
o Perform more MACs per instruction

n CPU: SIMD / Vector Instructions
o e.g., Specialized Vector Neural Network Instructions (VNNI) fuse separate multiply and add

instructions into single MAC instruction and avoid storing intermediate values in memory
n GPU: SIMT / Tensor Instructions

o e.g., New opcode Matrix Multiply Accumulate (HMMA) performs 64 MACs with Tensor Core

o Perform more MACs per cycle without increasing memory bandwidth by
adding support for reduced precision
n e.g., If access 512 bits per cycle, can perform 64 8-bit MACs vs. 16 32-bit MACs

Tensor Core
Image Source: Nvidia

NeurIPS 2019Vivienne Sze (@eems_mit) 44

Design Considerations for CPU and GPU
o Software (compiler)

n Reduce unnecessary MACs: Apply transforms
n Increase PE utilization: Schedule loop order and tile data to increase data reuse

in memory hierarchy
o Hardware

n Reduce time per MAC
o Increase speed of PEs
o Increase MACs per instruction using large aggregate instructions (e.g., SIMD, tensor core)

à requires additional hardware
n Increase number of parallel MACs

o Increase number of PEs on chip à area cost
o Support reduced precision in PEs

n Increase PE utilization
o Increase on-chip storage à area cost
o External memory BW à system cost

NeurIPS 2019Vivienne Sze (@eems_mit) 45

Specialized / Domain-
Specific Hardware

NeurIPS 2019Vivienne Sze (@eems_mit) 46

Properties We Can Leverage
q Operations exhibit high parallelism

à high throughput possible

q Memory Access is the Bottleneck

Vivienne Sze (@eems_mit) NeurIPS 2019

Example: AlexNet has 724M MACs à 2896M DRAM accesses required

ALU

Memory Read Memory WriteMAC*

* multiply-and-accumulate

filter weight
fmap act

partial sum updated
partial sum

Worst Case: all memory R/W are DRAM accesses

200x 1x

DRAM DRAM

47

Properties We Can Leverage
q Operations exhibit high parallelism

à high throughput possible

q Input data reuse opportunities (e.g., up to 500x for AlexNet)
à exploit low-cost memory

Vivienne Sze (@eems_mit) NeurIPS 2019

Filter Input Fmap

Convolutional Reuse
(Activations, Weights)

CONV layers only
(sliding window)

Filters

2

1

Input Fmap

Fmap Reuse
(Activations)

CONV and FC layers

Filter

2

1

Input Fmaps

Filter Reuse
(Weights)

CONV and FC layers
(batch size > 1)

48

Highly-Parallel Compute Paradigms
Temporal Architecture

(SIMD/SIMT)
Spatial Architecture

(Dataflow Processing)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

NeurIPS 2019Vivienne Sze (@eems_mit) 49

Temporal Architecture
(SIMD/SIMT)

Register File

Memory Hierarchy

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Control

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

Efficient	Data	Reuse	
Distributed	local	storage	(RF)	

Inter-PE	Communica5on	
Sharing	among	regions	of	PEs	

Processing	
Element	(PE)	

Control

Reg File 0.5 – 1.0 kB

Advantages of Spatial Architecture

NeurIPS 2019Vivienne Sze (@eems_mit) 50

How to Map the Dataflow?
Spatial Architecture

(Dataflow Processing)
Memory Hierarchy

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

CNN Convolution

?
activations

weights

partial
sums

Goal: Increase reuse of input data
(weights and activations) and local

partial sums accumulation
NeurIPS 2019Vivienne Sze (@eems_mit) 51

Efficient Dataflows
Y.-H. Chen, J. Emer, V. Sze,

“Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for
Convolutional Neural Networks,”

International Symposium on Computer Architecture (ISCA), June 2016.

NeurIPS 2019Vivienne Sze (@eems_mit) 52

Data Movement is Expensive

Maximize data reuse at low
cost levels of memory hierarchy

DRAM Global
Buffer

PE

PE PE

ALU fetch data to run
a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost*

200×

6×

PE ALU 2×

1×
1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

* measured from a commercial 65nm process

Specialized hardware with small (< 1kB)
low cost memory near compute

Farther and larger memories
consume more power

NeurIPS 2019Vivienne Sze (@eems_mit) 53

Weight Stationary (WS)

• Minimize weight read energy consumption
− maximize convolutional and filter reuse of weights

• Broadcast activations and accumulate partial sums spatially
across the PE array

• Examples: TPU [Jouppi, ISCA 2017], NVDLA

Global Buffer

W0 W1 W2 W3 W4 W5 W6 W7

Psum Activation

PE
Weight

[Chen, ISCA 2016]

NeurIPS 2019Vivienne Sze (@eems_mit) 54

• Minimize partial sum R/W energy consumption
− maximize local accumulation

• Broadcast/Multicast filter weights and reuse activations spatially
across the PE array

• Examples: [Moons, VLSI 2016], [Thinker, VLSI 2017]

Output Stationary (OS)

Global Buffer

P0 P1 P2 P3 P4 P5 P6 P7

Activation Weight

PE
Psum

[Chen, ISCA 2016]

NeurIPS 2019Vivienne Sze (@eems_mit) 55

• Minimize activation read energy consumption
− maximize convolutional and fmap reuse of activations

• Unicast weights and accumulate partial sums spatially
across the PE array

• Example: [SCNN, ISCA 2017]

Input Stationary (IS)

Global Buffer

I0 I1 I2 I3 I4 I5 I6 I7

Psum

Act
PE

Weight

[Chen, ISCA 2016]

NeurIPS 2019Vivienne Sze (@eems_mit) 56

Row Stationary Dataflow

• Maximize row convolutional reuse in RF
− Keep a filter row and fmap sliding window in RF

• Maximize row psum accumulation in RF

PE
b a c

Reg File

d c e

c

b a

[Chen, ISCA 2016]

1D convolution
within PE

NeurIPS 2019Vivienne Sze (@eems_mit) 57

Row Stationary Dataflow

Optimize for
overall energy efficiency
instead for only a certain

data type

[Chen, ISCA 2016]

PE 1

Row 1 Row 1

PE 2

Row 2 Row 2

PE 3

Row 3 Row 3

Row 1

= *

PE 4

Row 1 Row 2

PE 5

Row 2 Row 3

PE 6

Row 3 Row 4

Row 2

= *

PE 7

Row 1 Row 3

PE 8

Row 2 Row 4

PE 9

Row 3 Row 5

Row 3

= *

* * *

* * *

* * *

NeurIPS 2019Vivienne Sze (@eems_mit) 58

Eyeriss: Deep Neural Network Accelerator

On
-ch

ip
Bu

ffe
r Spatial

PE Array

4mm

4m
m

[Chen, ISSCC 2016]

Overall >10x energy reduction compared to a mobile GPU (Nvidia TK1)

Exploits data reuse for 100x reduction in memory accesses from global
buffer and 1400x reduction in memory accesses from off-chip DRAM

NeurIPS 2019Vivienne Sze (@eems_mit) 59Results for AlexNet

Features: Energy vs. Accuracy

0.1

1

10

100

1000

10000

0 20 40 60 80
Accuracy (Average Precision)

En
er

gy
/P

ix
el

 (n
J)

VGG162

AlexNet2

HOG1

Measured in on VOC 2007 Dataset
1. DPM v5 [Girshick, 2012]
2. Fast R-CNN [Girshick, CVPR 2015]

Exponential

Linear

Video
Compression

[Suleiman, ISCAS 2017]

Measured in 65nm*

* Only feature extraction. Does
not include data, classification

energy, augmentation and
ensemble, etc.

On
-c

hip
 B

uff
er Spatial

PE Array

4mm

4m
m

4mm

4m
m

[Suleiman, VLSI 2016] [Chen, ISSCC 2016]1 2

NeurIPS 2019Vivienne Sze (@eems_mit) 60

Break for Q&A

NeurIPS 2019Vivienne Sze (@eems_mit) 61

Algorithm (DNN Model)
& Hardware Co-Design

NeurIPS 2019Vivienne Sze (@eems_mit) 62

Algorithm & Hardware Co-Design

o Co-design algorithm + hardware à better than what each could achieve alone

o Co-design approaches can be loosely grouped into two categories:
n Reduce size of operands for storage/compute (Reduced Precision)
n Reduce number of operations for storage/compute (Sparsity and Efficient

Network Architecture)

o Hardware support required to increase savings in latency and energy
n Ensure that overhead of hardware support does not exceed benefits

o Unlike previously discussed approaches, these approaches can affect accuracy!
n Evaluate tradeoff between accuracy and other metrics

Vivienne Sze (@eems_mit) NeurIPS 2019 63

Reduced Precision

NeurIPS 2019Vivienne Sze (@eems_mit) 64

Why Reduce Precision (i.e., Reduce Bit Width)?
o Reduce data movement and storage cost for inputs and outputs of MAC

n Smaller memory à lower energy
o Reduce cost of MAC

n Cost of multiply increases with bit width (n) à energy and area by O(n2); delay by O(n)

HA

x3

FA

x2

FA

x1

FA

x2

FA

x1

HA

x0

FA

x1

HA

x0

HA

x0

FA

x3

FA

x2

FA

x3

x3 x2 x1 x0

z0

z1

z2

z3z4z5z6z7

y3

y2

y1

y0

Note: Bit width for multiplication and accumulation in a MAC are different
NeurIPS 2019Vivienne Sze (@eems_mit) 65

Impact of Reduced Precision on Energy & Area

[Horowitz, ISSCC 2014]

Operation: Energy
(pJ)

8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area
(µm2)

36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Relative Energy Cost

1 10 102 103 104

Relative Area Cost

1 10 102 103

NeurIPS 2019Vivienne Sze (@eems_mit) 66

What Determines Bit Width?
o Number of unique values

n e.g., M-bits to represent 2M values
o Dynamic range of values

n e.g., E-bits to scale values by 2(E-127)

o Signed or unsigned values
n e.g., signed requires one extra bit (S)

o Total bits = S+E+M

o Floating point (FP) allows range to
change for each value (E-bits)

o Fixed point (Int) has fixed range

o Default CPU/GPU is 32-bit float (FP32)

FP32

FP16

Int32

Int16

Int8

S E M
1 8 23

S E M
1 5 10

M
31

S

S M

1

1 15

S M
1 7

Range

10-38 – 1038

6x10-5 - 6x104

0 – 2x109

0 – 6x104

0 – 127

Image Source: B. Dally

Common Numerical Representations

NeurIPS 2019Vivienne Sze (@eems_mit) 67

What Determines Bit Width?

o For accuracy, require sufficient precision to represent
different data types

n For inference: weights, activations, and partial sums

n For training: weights, activations, partial sums, gradients,
and weight update

n Required precision can vary across data types
o Referred to as mixed precision

NeurIPS 2019Vivienne Sze (@eems_mit) 68

What Determines Bit Width?
o Reduce number of unique values (M-bits, a.k.a. mantissa)

n Default: Uniform quantization (values are equally spaced out)
n Non-uniform quantization (spacing can be computed, e.g., logarithmic, or

with look-up-table)
n Fewer unique values can make transforms and compression more effective

NeurIPS 2019Vivienne Sze (@eems_mit)

Image Source:[Lee, ICASSP 2017]

69

What Determines Bit Width?
o Reduce number of unique values (M-bits, a.k.a. mantissa)

n Default: Uniform quantization (values are equally spaced out)
n Non-uniform quantization (spacing can be computed, e.g., logarithmic, or

with look-up-table)
n Fewer unique values can make transforms and compression more effective

o Reduce dynamic range (E-bits, a.k.a., exponent)
n If possible, fix range (i.e., used fixed point, E=0)
n Share range across group of values (e.g., weights for a layer or channel)

o Tradeoff between number of bits allocated to M-bits and E-bits

NeurIPS 2019Vivienne Sze (@eems_mit)

S E E E E EMMMMMMMMMMfp16 (S=1, E=5, M=10)

S E E E E E E E EMMMMMMMbfloat16 (S=1, E=8, M=7)

range: ~5.9e-8 to ~6.5e4

range: ~1e-38 to ~3e38

70

Commercial Products Support Reduced Precision

Nvidia’s Pascal (2016) Google’s TPU (2016)
TPU v2 & v3 (2019)

8-bit fixed for Inference & 16-bit float for Training

Intel’s NNP-L (2019)

NeurIPS 2019Vivienne Sze (@eems_mit) 71

Reduced Precision in Research

o Reduce number of bits
n Binary Nets [Courbariaux, NeurIPS 2015]

o Reduce number of unique weights and/or activations
n Ternary Weight Nets [Li, NeurIPS Workshop 2016]
n XNOR-Net [Rategari, ECCV 2016]

o Non-Linear Quantization
n LogNet [Lee, ICASSP 2017]

o Training
n 8-bit with stochastic rounding
[Wang, NeurIPS 2018]

Binary Filters

Log Domain Quantization

NeurIPS 2019Vivienne Sze (@eems_mit) 72

Precision Scalable MACs for Varying Precision

Conventional data-gated MAC
Gate unused logic (e.g., full adders)

to reduce energy consumption

[Camus, JETCAS 2019]

Full precision 8bx8b 4bx4b 2bx8b

Many approaches add logic to increase
utilization for higher throughput/area;

however, overhead can reduce benefits

4bx4b

1.3x

1.6x

Evaluation of 19 precision scalable MAC designs
5% of values 8bx8b

95% of values at 2bx2b and 4bx4b

Conventional
data-gated

NeurIPS 2019Vivienne Sze (@eems_mit) 73

Design Considerations for Reduced Precision
o Impact on accuracy

n Must consider difficulty of dataset, task, and DNN model
o e.g., Easy to reduce precision for an easy task (e.g., digit classification);

does method work for a more difficult task?

o Does hardware cost exceed benefits?
n Need extra hardware to support variable precision

o e.g., Additional shift-and-add logic and registers for variable precision
n Granularity impacts hardware overhead as well as accuracy

o e.g., More overhead to support (1b, 2b, 3b … 16b) than (2b, 4b, 8b, 16b)

o Evaluation
n Use 8-bit for inference and 16-bit float for training for baseline
n 32-bit float is a weak baseline

NeurIPS 2019Vivienne Sze (@eems_mit) 74

Sparsity

NeurIPS 2019Vivienne Sze (@eems_mit) 75

Why Increase Sparsity?

o Reduce number of MACs
n Anything multiplied by zero is zero à avoid performing unnecessary MACs
n Reduce energy consumption and latency

o Reduce data movement
n If one of the inputs to MAC is zero, can avoid reading the other input
n Compress data by only sending non-zero values

o CPU/GPU libraries typically only support really high sparsity (> 99%)
due to the overhead
n Sparsity for DNNs typically much lower à need specialized hardware

NeurIPS 2019Vivienne Sze (@eems_mit) 76

Sparsity in Activation Data

9 -1 -3
1 -5 5
-2 6 -1

Many zeros in output fmaps after ReLU
ReLU

9 0 0
1 0 5
0 6 0

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5
CONV Layer

of activations # of non-zero activations

(Normalized)

[Chen, ISSCC 2016]
NeurIPS 2019Vivienne Sze (@eems_mit) 77

Data Gating / Zero Skipping

Eyeriss [Chen, ISSCC 2016]

Filter
Scratch Pad

(225x16b SRAM)

Partial Sum
Scratch Pad

(24x16b REG)

Filt

Img

Input
Psum

2-stage
pipelined
multiplier

Output
Psum

0

Accumulate
Input Psum

1

0

== 0 Zero
Buffer

Enable

Image
Scratch Pad

(12x16b REG)

0
1

Skip MAC and mem reads
when image data is zero.

Reduce PE power by 45%

Reset

Cnvlutin [Albericio, ISCA 2016]

Gate operations
(reduce power consumption)

Skip operations
(increase throughput)

NeurIPS 2019Vivienne Sze (@eems_mit) 78

Apply Compression to Reduce Data Movement

[Chen, ISSCC 2016]

0	

1	

2	

3	

4	

5	

6	

1	 2	 3	 4	 5	

DR
AM

	A
cc
es
s	(
M
B)
	

AlexNet	Conv	Layer	

Uncompressed	 Compressed	

1 2 3 4 5
AlexNet Conv Layer

DRAM
Access
(MB)

0

2

4

6
1.2�

1.4�
1.7�

1.8�
1.9�

Uncompressed
Fmaps + Weights

RLE Compressed
Fmaps + Weights

Simple RLC within 5% - 10% of theoretical entropy limit

Example: Eyeriss compresses activations to reduce DRAM BW

…

…

…

…

…

…

ReLU

Input Image

Output Image

Filter Filt

Img

Psum

Psum

Buffer
SRAM

108KB

14×12 PE Array

Link Clock Core Clock

Run-Length Compression (RLC)

Example:

Output (64b):

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, …

5b 16b 1b 5b 16b 5b 16b
2 12 4 53 2 22 0

Run Level Run Level Run Level Term

Off-Chip DRAM
64 bits

Decomp

Comp

DCNN Accelerator DNN Accelerator

NeurIPS 2019Vivienne Sze (@eems_mit) 79

Pruning – Make Weights Sparse
Optimal Brain Damage

[Lecun, NeurIPS 1990]

pruning
neurons

pruning
synapses

after pruningbefore pruning

Prune DNN based on
magnitude of weights

[Han, NeurIPS 2015]

Example: AlexNet
Weight Reduction: CONV layers 2.7x,

FC layers 9.9x
Overall Reduction: Weights 9x, MACs 3x

retraining

NeurIPS 2019Vivienne Sze (@eems_mit) 80

Unstructured or Structured Sparsity
Increase coarseness

Image Source: [Mao, CVPR Workshop 2017]

Benefits:
Increase coarseness à more structure in sparsity (easier for hardware)
Less signaling overhead for location of zeros à better compression

NeurIPS 2019Vivienne Sze (@eems_mit) 81

Design Considerations for Sparsity

o Impact on accuracy
n Must consider difficulty of dataset, task, and DNN model

o e.g., AlexNet and VGG known to be over parameterized and thus easy to prune weights;
does method work on efficient DNN models?

o Does hardware cost exceed benefits?
n Need extra hardware to identify sparsity

o e.g., Additional logic to identify non-zeros and store non-zero locations
n Accounting for sparsity in both weights and activations is challenging

o Need to compute intersection of two data streams rather than find next non-zero in one
n Granularity impacts hardware overhead as well as accuracy

o e.g., Fine-grained or coarse-grained (structured) sparsity
n Compressed data will be variable length

o Reduced flexibility in access order à random access will have significant overhead

NeurIPS 2019Vivienne Sze (@eems_mit) 82

Efficient Network
Architectures

NeurIPS 2019Vivienne Sze (@eems_mit) 83

Efficient DNN Models
o Design efficient DNN Models

n Tends to increase variation of layer shapes (e.g., R, S, C) that need to be supported
n Can be handcrafted or learned using Network/Neural Architecture Search (NAS)

Year Accuracy* # Layers # Weights # MACs
AlexNet 2012 80.4% 8 61M 724M

MobileNet[1] 2017 89.5% 28 4M 569M[1]

* ImageNet Classification Top-5

Filter Decomposition

R

S

C …

…

…

R

S

…
…

C

1
1

*

Bottleneck Layer

Reduce number of
channels before large
filter convolution

Decompose
large filters into
smaller filters

NeurIPS 2019Vivienne Sze (@eems_mit)

1x1 convolutionsFilter Decomposition

84

Manual Network Design

o Reduce Spatial Size (R, S)
n stacked filters

o Reduce Channels (C)
n 1x1 convolution, group of filters

o Reduce Filters (M)
n feature map reuse across layers

o Layer Pooling
n global pooling before FC layer

NeurIPS 2019Vivienne Sze (@eems_mit)

Filters

R

S

…

…

…C

H

W

…

…

…C

…

E

F

…

…

…M

…

…

…M

…

R

S

…

…

…C

H

W
…

…C

1

N

1

M

1

…

…

Input fmaps
Output fmaps

…

E

F
N

85

Reduce Spatial Size (R, S): Stacked Filter

decompose

5x5 filter 5x1 filter

1x5 filter

Apply sequentially

GoogleNet/
Inception v3 separable

filters

5x5 filter Two 3x3 filters

decompose

Apply sequentially

VGG

Replace a large filter with a series of smaller filters
NeurIPS 2019Vivienne Sze (@eems_mit) 86

Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Modified image from source:
Stanford cs231n

1
56

56

filter1
(1x1x64)

NeurIPS 2019Vivienne Sze (@eems_mit)

[Lin, ICLR 2014]

87

Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Modified image from source:
Stanford cs231n

filter2
(1x1x64)

2
56

56

NeurIPS 2019Vivienne Sze (@eems_mit)

[Lin, ICLR 2014]

88

Reduce Channels (C): 1x1 Convolution

Use 1x1 filter to summarize cross-channel information

Modified image from source:
Stanford cs231n

[Lin, ICLR 2014]

32
56

56

NeurIPS 2019Vivienne Sze (@eems_mit) 89

GoogLeNet:1x1 Convolution

1x1 convolutions to
reduce number of weights
and multiplications

Inception
Module

[Szegedy, CVPR 2015]

Apply 1x1 convolution before ‘large’ convolution filters.
Reduce weights such that entire CNN can be trained on one GPU.

Number of multiplications reduced from 854M à 358M

NeurIPS 2019Vivienne Sze (@eems_mit) 90

Reduce Channels (C): Group of Filters

Split filters and channels of
feature map into different groups

e.g., For two groups, each filter
requires 2x fewer weights and

multiplications

HR

S

… …

…

C/2

input fmap

output fmap1

…

…

……C…filter1

E

W F
input fmap

output fmap2
……

E

F

H …

…

……C…

W

R

… …

…

C/2 filter2

S

NeurIPS 2019Vivienne Sze (@eems_mit) 91

Reduce Channels (C): Group of Filters

The extreme case is
depthwise convolution –

each group contains only one
channel

HR

S

input fmap

output fmap1

…

…

……C…filter1

E

W F
input fmap

output fmapC
……

E

F

H …

…

……C…

W

R

filterC

S

NeurIPS 2019Vivienne Sze (@eems_mit) 92

Reduce Channels (C): Group of Filters
Two ways of mixing information across groups

Pointwise (1x1) Convolution
(Mix in one step)

MobileNet [Howard, arXiv 2017]

Shuffle Operation
(Mix in multiple steps)

ShuffleNet [Zhang, CVPR 2018]

C
1

1

S

R

1

R

S
C

+

fmap 0

layer 1

fmap 1

layer 2

fmap 2

NeurIPS 2019Vivienne Sze (@eems_mit) 93

Reduce Filters (M): Feature Map Reuse
…

R

S
1

C
…

…

…

M Filters
…

R

S
K

C …

…

…

R

S
M

C …

…

…

…

Output fmap with M channels

L
2

L
3

L
1

Reuse (M-K) channels in feature maps
from previously processed layers

[Huang, CVPR 2017]

DenseNet reuses feature map
from multiple layers

M-K

M

F
……

……

E

NeurIPS 2019Vivienne Sze (@eems_mit)

K

94

Layer Pooling: Simplify FC Layers

First FC layer accounts
for a significant portion
of weights

38M of 61M for AlexNet

[Krizhevsky, NeurIPS 2012]

105M 224M 150M 112M 75M 38M 17M 4M# of MACs

L1 L2 L3 L4 L5 L6 L7

1000

scores224x224

Input

Image
C

o
n

v
 (

1
1

x
1

1
)

N
o

n
-L

in
e

a
ri

ty

N
o

rm
 (

L
R

N
)

M
a

x
 P

o
o

l

C
o

n
v

 (
5

x
5

)

N
o

n
-L

in
e

a
ri

ty

N
o

rm
 (

L
R

N
)

M
a

x
 P

o
o

li
n

g

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

C
o

n
v

 (
3

x
3

)

N
o

n
-L

in
e

a
ri

ty

M
a

x
 P

o
o

li
n

g

F
u

ll
y

 C
o

n
n

e
c
t

N
o

n
-L

in
e

a
ri

ty

F
u

ll
y

 C
o

n
n

e
c
t

N
o

n
-L

in
e

a
ri

ty

F
u

ll
y

 C
o

n
n

e
c
t

34k 307k 885k 664k 442k 37.7M 16.8M 4.1M # of weights 38M

NeurIPS 2019Vivienne Sze (@eems_mit) 95

Layer Pooling: Simplify FC Layers

[Lin, ICLR 2014]

NeurIPS 2019Vivienne Sze (@eems_mit)

Global Pooling reduces the size
of the input to the first FC layer,

which reduces its size

H
…

input fmap

output fmap1

…

C

1

W
1

H …

…C

W

…

filter1

H

input fmap

output fmap1

…

C

1

W
1

Pool(e.g., HxWxCx1000 à 1x1xCx1000)

96

Network/Neural Architecture Search (NAS)

3x3? 5x5?

128 Filters?

Pool? CONV?

Rather than handcrafting the architecture, automatically search for it

NeurIPS 2019Vivienne Sze (@eems_mit) 97

Network/Neural Architecture Search (NAS)
o Three main components:

n Search Space (what is the set of all samples)
n Optimization Algorithm (where to sample)
n Performance Evaluation (how to evaluate samples)

Key Metrics: Achievable DNN accuracy and required search time

Search
Space

Performance
Evaluation Evaluation

Result

Optimization
Algorithm

Next Location
to Sample

Sampled
Network

Final
Network

NeurIPS 2019Vivienne Sze (@eems_mit) 98

Evaluate NAS Search Time

!"#$%&' = %)#'&#*+$' × !"#$*$-_'&#*+$

!"#$%&' ∝ %)#%&'_!)%"%0 × %)#%&'_'!$*' × '"1$'$&-23_'*&2$ × (!"#$!-&"% + !"#$$6&+)

(1) Shrink the
search space

(2) Improve the
optimization algorithm

(3) Simplify the
performance
evaluation

Goal: Improve the efficiency of NAS in the three main components

NeurIPS 2019Vivienne Sze (@eems_mit)

Search
Space

Performance
Evaluation

Optimization
Algorithm

99

(1) Shrink the Search Space

o Trade the breadth of architectures
for search speed

o May limit the performance that
can be achieved

o Use domain knowledge from manual
network design to help guide the
reduction of the search space

Architecture
Universe
Architecture
Universe

Search Space

Optimal

Optimal

NeurIPS 2019Vivienne Sze (@eems_mit)

Samples =
100

(1) Shrink the Search Space

o Search space = layer operations + connections between layers

• Identity
• 1x3 then 3x1 convolution

• 1x7 then 7x1 convolution
• 3x3 dilated convolution
• 1x1 convolution

• 3x3 convolution

• 3x3 separable convolution
• 5x5 separable convolution

• 3x3 average pooling
• 3x3 max pooling
• 5x5 max pooling

• 7x7 max pooling

Common layer operations

[Zoph, CVPR 2018]

NeurIPS 2019Vivienne Sze (@eems_mit) 101

(1) Shrink the Search Space

o Search space = layer operations + connections between layers

Image Source: [Zoph, CVPR 2018]

NeurIPS 2019Vivienne Sze (@eems_mit)

Smaller Search Space

102

(2) Improve Optimization Algorithm
Random Gradient DescentCoordinate Descent

Reinforcement Learning BayesianEvolutionary

NeurIPS 2019Vivienne Sze (@eems_mit) 103

(3) Simplify the Performance Evaluation

o NAS needs only the rank of the performance values
o Method 1: approximate accuracy

Proxy Task Early Termination Accuracy Prediction

E.g., Smaller resolution,
simpler tasks

Stop training earlier

A
cc

u
ra

cy

Iteration

Stop

Extrapolate accuracy

A
cc

u
ra

cy

Iteration

Predict

NeurIPS 2019Vivienne Sze (@eems_mit) 104

(3) Simplify the Performance Evaluation

o NAS needs only the rank of the performance values
o Method 2: approximate weights

NeurIPS 2019Vivienne Sze (@eems_mit) 105

Copy Weights Estimate Weights

Reuse weights from
other similar networks

Infer the weights from the
previous feature maps

Copy

Generate

What
weights?

Previous

New

Feature
Map

Filter

Previous New

(3) Simplify the Performance Evaluation

o NAS needs only the rank of the performance values
o Method 3: approximate metrics (e.g., latency, energy)

NeurIPS 2019Vivienne Sze (@eems_mit)

Look-Up TableProxy Metric

Use an easy-to-compute
metric to approximate target

Use table lookup

Latency # MACs

106

Design Considerations for NAS

o The components may not be chosen individually
n Some optimization algorithms limit the search space
n Type of performance metric may limit the selection of the

optimization algorithms

o Commonly overlooked properties
n The complexity of implementation
n The ease of tuning hyperparameters of the optimization
n The probability of convergence to a good architecture

NeurIPS 2019Vivienne Sze (@eems_mit) 107

Hardware In the Loop

NeurIPS 2019Vivienne Sze (@eems_mit) 108

How to Evaluate Complexity of DNN Model?
Number of MACs and weights are not good proxies for latency and energy

of operations (MACs) does not
approximate latency well

Source: Google
(https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html)

Output	Feature	Map	
43%	

Input	Feature	Map	
25%	

Weights	
22%	

Computa:on	
10%	

Energy	Consump:on	
of	GoogLeNet	

[Yang, CVPR 2017]

of weights alone is not a good metric for energy
(All data types should be considered)

Energy breakdown
of GoogLeNet

https://energyestimation.mit.edu/

NeurIPS 2019Vivienne Sze (@eems_mit) 109

https://ai.googleblog.com/2018/04/introducing-cvpr-2018-on-device-visual.html
https://energyestimation.mit.edu/

Energy-Aware Pruning

Directly target energy
and incorporate it into the

optimization of DNNs to provide
greater energy savings

• Sort layers based on energy and prune
layers that consume the most energy first

• Energy-aware pruning reduces AlexNet
energy by 3.7x and outperforms the
previous work that uses magnitude-
based pruning by 1.7x

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ori. DC EAP

Normalized Energy (AlexNet)

2.1x 3.7x

x109

Magnitude
Based Pruning

Energy Aware
Pruning

Pruned models available at
http://eyeriss.mit.edu/energy.html[Yang, CVPR 2017]

NeurIPS 2019Vivienne Sze (@eems_mit) 110

http://eyeriss.mit.edu/energy.html

NetAdapt: Platform-Aware DNN Adaptation

• Automatically adapt DNN to
a mobile platform to reach a
target latency or energy budget

• Use empirical measurements
to guide optimization (avoid
modeling of tool chain or
platform architecture)

• Requires very few
hyperparameters to tune

In collaboration with Google’s Mobile Vision Team

NetAdapt Measure

…

Network Proposals

Empirical Measurements
Metric Proposal A … Proposal Z

Latency 15.6 … 14.3

Energy 41 … 46

…… …

Pretrained
Network Metric Budget

Latency 3.8

Energy 10.5

Budget

Adapted
Network

… …

Platform

A B C D Z

[Yang, ECCV 2018]

Code available at http://netadapt.mit.edu

NeurIPS 2019Vivienne Sze (@eems_mit) 111

http://netadapt.mit.edu/

Improved Latency vs. Accuracy Tradeoff
o NetAdapt boosts the measured inference speed of MobileNet by up to 1.7x

with higher accuracy

Reference:
MobileNet: Howard et al, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” arXiv 2017
MorphNet: Gordon et al., “Morphnet: Fast & simple resource-constrained structure learning of deep networks,” CVPR 2018

+0.3% accuracy
1.7x faster

+0.3% accuracy
1.6x faster *Tested on the ImageNet dataset

and a Google Pixel 1 CPU

NeurIPS 2019Vivienne Sze (@eems_mit) 112

Design Considerations for Co-Design

o Impact on accuracy
n Consider quality of baseline (initial) DNN model, difficulty of task and dataset
n Sweep curve of accuracy versus latency/energy to see the full tradeoff

o Does hardware cost exceed benefits?
n Need extra hardware to support variable precision and shapes or to identify

sparsity
n Granularity impacts hardware overhead as well as accuracy

o Evaluation
n Avoid only evaluating impact based on number of weights or MACs as they

may not be sufficient for evaluating energy consumption and latency

NeurIPS 2019Vivienne Sze (@eems_mit) 113

Design Considerations for Co-Design

o Time required to perform co-design
n e.g., Difficulty of tuning affected by

o Number of hyperparameters
o Uncertainty in relationship between hyperparameters and impact on performance

o Other aspects that affect accuracy, latency or energy
n Type of data augmentation and preprocessing
n Optimization algorithm, hyperparameters, learning rate schedule, batch size
n Training and finetuning time
n Deep learning libraries and quality of the code

o How does the approach perform on different platforms?
n Is the approach a general method, or applicable on specific hardware?

NeurIPS 2019Vivienne Sze (@eems_mit) 114

Training Approaches for Co-Design

1. Train from scratch

2. Use pretrained large DNN model
a) Initialize weights for an efficient

DNN model
b) Knowledge distillation to an

efficient DNN model
o Need to keep pretrained model

o No guarantees which approach
is better (open area of research)

Complex
DNN B

(teacher)

Simple DNN
(student)

so
ftm

ax

so
ftm

ax

Complex
DNN A

(teacher) so
ftm

ax

scores
class
probabilities

Try to match

[Bucilu, KDD 2006],[Hinton, arXiv 2015]
NeurIPS 2019Vivienne Sze (@eems_mit) 115

Flexibility & Scalability

NeurIPS 2019Vivienne Sze (@eems_mit) 116

Many Efficient DNN Design Approaches

pruning
neurons

pruning
synapses

after pruningbefore pruning

Network Pruning

C
1

1
S

R

1

R

S
C

Efficient Network Architectures

10100101000000000101000000000100

01100110

Reduce Precision

32-bit float

8-bit fixed

Binary 0

No guarantee that DNN algorithm
designer will use a given approach.
Need flexible DNN processor!

[Chen, SysML 2018]
NeurIPS 2019Vivienne Sze (@eems_mit) 117

Limitations of Existing DNN Processors

o Specialized DNN processors often rely on certain properties of the
DNN model in order to achieve high energy-efficiency

o Example: Reduce memory access by amortizing across PE array

PE arrayWeight
Memory

Activation
Memory

Weight reuse

Activation reuse

NeurIPS 2019Vivienne Sze (@eems_mit) 118

Limitations of Existing DNN Processors

o Reuse depends on # of channels, feature map/batch size
n Not efficient across all DNN models (e.g., efficient network architectures)

PE array
(spatial

accumulation)

Number of filters
(output channels)

Number of
input channels

PE array
(temporal

accumulation)

Number of filters
(output channels)

feature map
or batch size1

C
1

1R

Example mapping for
Depth-wise layer

S

NeurIPS 2019Vivienne Sze (@eems_mit) 119

Need Flexible Dataflow

Use flexible dataflow (Row Stationary) to exploit reuse in any
dimension of DNN to increase energy efficiency and array utilization

Example: Depth-wise layer
NeurIPS 2019Vivienne Sze (@eems_mit) 120

Need Flexible On-Chip Network for Varying Reuse

o When reuse available, need multicast to exploit spatial data reuse for energy
efficiency and high array utilization

o When reuse not available, need unicast for high BW for weights for FC and
weights & activations for high PE utilization

o An all-to-all on-chip network satisfies above but too expensive and not scalable

G
lo

ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PEPE PE PE
G

lo
ba

l B
uf

fe
r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

G
lo

ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

G
lo

ba
l B

uf
fe

r

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE PE PEPE

High Bandwidth, Low Spatial Reuse Low Bandwidth, High Spatial Reuse

Unicast Networks Broadcast Network1D Multicast Networks1D Systolic Networks

[Chen, JETCAS 2019]
NeurIPS 2019Vivienne Sze (@eems_mit) 121

Hierarchical Mesh
GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

GLB
Cluster

Router
Cluster

PE
Cluster

…

…

…

…

…… …

Mesh
Network

All-to-all
Network

(a) (b) (c) (d) (e)

High Bandwidth High Reuse Grouped Multicast Interleaved Multicast

All-to-AllMesh

[Chen, JETCAS 2019]

NeurIPS 2019Vivienne Sze (@eems_mit) 122

Eyeriss v2: Balancing Flexibility and Efficiency

Efficiently supports
o Wide range of filter shapes

n Large and Compact
o Different Layers

n CONV, FC, depth wise, etc.

o Wide range of sparsity
n Dense and Sparse

o Scalable architecture

Over an order of magnitude
faster and more energy efficient

than Eyeriss v1

Speed up over Eyeriss v1 scales with
number of PEs

of PEs 256 1024 16384

AlexNet 17.9x 71.5x 1086.7x

GoogLeNet 10.4x 37.8x 448.8x

MobileNet 15.7x 57.9x 873.0x

5.6
10.9
12.6

[Chen, JETCAS 2019]

NeurIPS 2019Vivienne Sze (@eems_mit) 123

Design Considerations for Flexibility and Scalability

o Many of the existing DNN processors rely on certain properties of
the DNN model
n Properties cannot be guaranteed as the wide range techniques used for

efficient DNN model design has resulted in a more diverse set of DNNs
n DNN processors should be sufficiently flexible to efficiently support a wide

range of techniques

o Evaluate DNN processors on a comprehensive set of benchmarks
n MLPerf benchmark is a start, but may need more (e.g., reduced precision,

sparsity, efficient network architectures)

o Evaluate improvement in performance as resources scales up!
n Multiple chips modules [Zimmer, VLSI 2019] and Wafer Scale [Lie, HotChips 2019]

NeurIPS 2019Vivienne Sze (@eems_mit) 124

Design Considerations for ASIC
o Increase PE utilization

n Flexible mapping and on-chip network for different DNN models à
requires additional hardware

o Reduce data movement
n Custom memory hierarchy and dataflows that exploit data reuse
n Apply compression to exploit redundancy in data à requires additional

hardware
o Reduce time and energy per MAC

n Reduce precision à if precision varies, requires additional hardware;
impact on accuracy

o Reduce unnecessary MACs
n Exploit sparsity à requires additional hardware; impact on accuracy
n Exploit redundant operations à requires additional hardware

NeurIPS 2019Vivienne Sze (@eems_mit) 125

Other Platforms

NeurIPS 2019Vivienne Sze (@eems_mit) 126

Processing In Memory / In Memory Compute

o Reduce data movement by moving
compute into memory

o Analog compute
n Increased sensitivity to circuit non-

idealities: non-linearities, process,
voltage, and temperature variations

V1
G1

I1 = V1�G1
V2

G2

I2 = V2�G2

I = I1 + I2
= V1�G1 + V2�G2

Image Source: [Shafiee, ISCA 2016]

Activation is input voltage (Vi)
Weight is resistor conductance (Gi)

Partial sum
is output
current

NeurIPS 2019Vivienne Sze (@eems_mit)

eNVM:[Yu, PIEEE 2018], SRAM:[Verma, SSCS 2019]

More details in tutorial
@ ISSCC 2020

127

Field Programmable Gate Array (FPGA)
o Often implemented as matrix-vector multiply

n e.g., Microsoft Brainwave NPU [Fowers, ISCA 2018]

o A popular approach uses weight stationary
dataflow and stores all weights on FPGA for low
latency (batch size of 1)

o Reduced precision to fit more weights and MACs
on FPGA

NeurIPS 2019Vivienne Sze (@eems_mit)

More details in tutorial
@ ISSCC 2020

128

DNN Processor Evaluation Tools
o Require systematic way to

n Evaluate and compare wide range of
DNN processor designs

n Rapidly explore design space
o Accelergy [Wu, ICCAD 2019]

n Early stage energy estimation tool at
the architecture level
o Estimate energy consumption based on

architecture level components (e.g.,
of PEs, memory size, on-chip network)

n Evaluate architecture level energy
impact of emerging devices
o Plug-ins for different technologies

o Timeloop [Parashar, ISPASS 2019]

n DNN mapping tool
n Performance Simulator à Action counts

Open-source code available at:
http://accelergy.mit.edu

Accelergy
(Energy Estimator Tool)

Architecture
description

Action
countsAction
counts

Compound
component
description

… Energy
estimation

Energy
estimation
plug-in 0

Energy
estimation
plug-in 1

Timeloop
(DNN Mapping Tool &

Performance Simulator)

NeurIPS 2019Vivienne Sze (@eems_mit) 129

http://accelergy.mit.edu/

DNN Compilers for Diverse DNN Platforms

https://github.com/pytorch/glow

NeurIPS 2019Vivienne Sze (@eems_mit)

https://tvm.apache.org/

Compilers generate optimized code for various DNN platforms (backends)
from high-level frameworks

130

https://github.com/pytorch/glow
https://tvm.apache.org/

Summary

o DNNs are a critical component in the AI revolution, delivering
record breaking accuracy on many important AI tasks for a wide range of
applications; however, it comes at the cost of high computational
complexity

o Efficient processing of DNNs is an important area of research with many
promising opportunities for innovation at various levels of hardware
design, including algorithm co-design

o When considering different DNN solutions it is important to evaluate
with the appropriate workload in term of both input and model, and
recognize that they are evolving rapidly

o It is important to consider a comprehensive set of metrics when
evaluating different DNN solutions: accuracy, throughput, latency,
power, energy, flexibility, scalability and cost

NeurIPS 2019Vivienne Sze (@eems_mit) 131

Additional Resources
V. Sze, Y.-H. Chen, T-J. Yang, J. Emer,

“Efficient Processing of Deep Neural Networks:
A Tutorial and Survey,” Proceedings of the IEEE, Dec. 2017

For updates

Book Coming Soon!

MIT Professional Education Course on
“Designing Efficient Deep Learning Systems”
http://professional-education.mit.edu/deeplearning

DNN tutorial website
http://eyeriss.mit.edu/tutorial.html

More info about our research on efficient computing
for DNNs, robotics, and health care
http://sze.mit.edu

NeurIPS 2019Vivienne Sze (@eems_mit)

EEMS Mailing List

132

http://professional-education.mit.edu/deeplearning
http://eyeriss.mit.edu/tutorial.html
http://sze.mit.edu/

References (1 of 4)
Deep Learning Overview
o Transformer: Vaswani et al, “Attention is all you need,” NeurIPS 2017
o LeNet: LeCun, Yann, et al. “Gradient-based learning applied to document recognition,” Proc. IEEE 1998
o AlexNet: Krizhevsky et al. “Imagenet classification with deep convolutional neural networks,” NeurIPS 2012
o VGGNet: Simonyan et al.. “Very deep convolutional networks for large-scale image recognition,” ICLR 2015
o GoogleNet: Szegedy et al. “Going deeper with convolutions,” CVPR 2015
o ResNet: He et al. “Deep residual learning for image recognition,” CVPR 2016
o EfficientNet: Tan et al., “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML 2019
Key Metrics and Design Objectives
o Sze et al., “Hardware for machine learning: Challenges and opportunities,” CICC 2017,

https://www.youtube.com/watch?v=8Qa0E1jdkrE&feature=youtu.be
o Sze et al., “Efficient processing of deep neural networks: A tutorial and survey,” Proc. IEEE 2017
o Williams et al., “Roofline: An insightful visual performance model for floating-point programs and multicore

architectures,” CACM 2009
o Chen et al., Eyexam, https://arxiv.org/abs/1807.07928
CPU and GPU Platforms
o Mathieu et al., “Fast training of convolutional networks through FFTs,” ICLR 2014
o Cong et al., “Minimizing computation in convolutional neural networks,” ICANN 2014
o Lavin et al., “Fast algorithms for convolutional neural networks,” CVPR 2016

Vivienne Sze (@eems_mit) NeurIPS 2019 133

https://www.youtube.com/watch?v=8Qa0E1jdkrE&feature=youtu.be
https://arxiv.org/abs/1807.07928

References (2 of 4)
Specialized / Domain-Specific Hardware (ASICs): Efficient Dataflows
o Chen et al., “Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural

Networks,” ISCA 2016
o Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” ISCA 2017
o NVDLA, http://nvdla.org
o Moons et al., “A 0.3–2.6 TOPS/W precision-scalable processor for real-time large-scale ConvNets,” VLSI 2017
o Parashar et al, “Scnn: An accelerator for compressed-sparse convolutional neural networks,” ISCA 2017
o Chen et al., “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,”

ISSCC 2016, http://eyeriss.mit.edu
o Suleiman et al., “Towards Closing the Energy Gap Between HOG and CNN Features for Embedded Vision,”

ISCAS 2017
o Suleiman et al., “A 58.6mW Real-time Programmable Object Detection with Multi-Scale Multi-Object Support

Using Deformable Parts Models on 1920×1080 Video at 30fps,” VLSI 2016
Co-Design: Reduced Precision
o Courbariaux et al., “Binaryconnect: Training deep neural networks with binary weights during propagations,”

NeurIPS 2015
o Li et al., “Ternary weight networks,” NeurIPS Workshop 2016
o Rategari et al., “XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks,” ECCV 2016
o Lee et al., “LogNet: Energy-efficient neural networks using logarithmic computation,” ICASSP 2017
o Camus et al., “Review and Benchmarking of Precision-Scalable Multiply-Accumulate Unit Architectures for

Embedded Neural-Network Processing,” JETCAS 2019

Vivienne Sze (@eems_mit) NeurIPS 2019 134

http://nvdla.org/
http://eyeriss.mit.edu/

References (3 of 4)
Co-Design: Sparsity
o Lecun et al., Optimal Brain Damage,” NeurIPS 1990
o Han et al., “Learning both weights and connections for efficient neural networks,” NeurIPS 2015
o Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural network computing”, ISCA 2016
Co-Design: Efficient Network Architectures
o Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision applications”, arXiv 2017
o Zhang et al., “ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices,” CVPR 2018
o Lin et al., “Network in network” ICLR 2014
o Huang et al., “Densely Connected Convolutional Networks,” CVPR 2017
o Yu et al., “Deep layer aggregation," CVPR 2018
o Zoph at al., “Learning Transferable Architectures for Scalable Image Recognition,” CVPR 2018
Co-Design: Hardware in the Loop
o Yang et al., “Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning,” CVPR

2017, http://eyeriss.mit.edu/energy.html
o Yang et al., “NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications,” ECCV 2018,

http://netadapt.mit.edu

Vivienne Sze (@eems_mit) NeurIPS 2019 135

http://eyeriss.mit.edu/energy.html
http://netadapt.mit.edu/

References (4 of 4)
Specialized Hardware (ASICs): Flexibility and Scalability
o Chen et al., “Understanding the Limitations of Existing Energy-Efficient Design Approaches for Deep Neural

Networks,” SysML 2018, https://www.youtube.com/watch?v=XCdy5egmvaU
o Chen et al., “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices,” JETCAS

2019
o Zimmer et al., “A 0.11pJ/Op, 0.32-128 TOPS, Scalable Multi-Chip-Module-based Deep Neural Network

Accelerator with Ground-Reference Signaling in 16nm,” VLSI 2019
o Lie (Cerebras), “Wafer Scale Deep Learning,” Hot Chips 2019
Other Platforms: Processing In Memory / In-Memory Computing and FPGAs
o Sze et al., “How to Understand and Evaluate Deep Learning Processors,” ISSCC Tutorial 2020, http://isscc.org/
o Verma et al., “In-Memory Computing: Advances and prospects,” ISSCC Tutorial 2018 / SSCS Magazine 2019
o Yu, “Neuro-Inspired Computing with Emerging Nonvolatile Memorys,” Proc. IEEE 2018
o Yang et al., “Design Considerations for Efficient Deep Neural Networks on Processing-in-Memory Accelerators,”

IEDM 2019
o Fowers et al., “A configurable cloud-scale DNN processor for real-time AI,” ISCA 2018
DNN Processor Evaluation Tools
o Wu et al., “Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs,” ICCAD

2019, http://accelergy.mit.edu
o Parashar et al., “Timeloop: A Systematic Approach to DNN Accelerator Evaluation,” ISPASS 2019

Vivienne Sze (@eems_mit) NeurIPS 2019 136

https://www.youtube.com/watch?v=XCdy5egmvaU
http://isscc.org/
http://accelergy.mit.edu/

NetAdapt: Problem Formulation

max$%& '(()*+ ,-./*(+ +0 1*,2)*+ ≤ 4-52, / = 1,⋯ ,:

max$%&;
'(()*+< ,-./*(+ +0 1*,2)*+< ≤ 1*,2)*+<=> − ∆1<,2, / = 1,⋯ ,:

Break into a set of simpler problems and solve iteratively

*Acc: accuracy function, Res: resource evaluation function,
ΔR: resource reduction, Bud: given budget

• Advantages
• Supports multiple resource budgets at the same time
• Guarantees that the budgets will be satisfied because the resource consumption

decreases monotonically
• Generates a family of networks (from each iteration) with different resource versus

accuracy trade-offs
Vivienne Sze (@eems_mit) NeurIPS 2019 137

NetAdapt: Simplified Example of One Iteration

Code available at
http://netadapt.mit.edu

Vivienne Sze (@eems_mit) NeurIPS 2019 138

Latency: 100ms
Budget: 80ms

100ms 90ms 80ms

100ms 80ms

Selected

Selected

Layer 1

Layer 4

…

Acc: 60%

Acc: 40%

…Selected

2. Meet Budget

Latency: 80ms
Budget: 60ms

1. Input 4. Output3. Maximize
Accuracy

Network from
Previous
Iteration

Network for
Next Iteration

http://netadapt.mit.edu/

